Cargando…
Connectome sorting by consensus clustering increases separability in group neuroimaging studies
A fundamental challenge in preprocessing pipelines for neuroimaging datasets is to increase the signal-to-noise ratio for subsequent analyses. In the same line, we suggest here that the application of the consensus clustering approach to brain connectivity matrices can be a valid additional step for...
Autores principales: | Rasero, Javier, Diez, Ibai, Cortes, Jesus M., Marinazzo, Daniele, Stramaglia, Sebastiano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370473/ https://www.ncbi.nlm.nih.gov/pubmed/30793085 http://dx.doi.org/10.1162/netn_a_00074 |
Ejemplares similares
-
Consensus clustering approach to group brain connectivity matrices
por: Rasero, Javier, et al.
Publicado: (2017) -
Information Transfer and Criticality in the Ising Model on the Human Connectome
por: Marinazzo, Daniele, et al.
Publicado: (2014) -
Predicting functional networks from region connectivity profiles in task-based versus resting-state fMRI data
por: Rasero, Javier, et al.
Publicado: (2018) -
Mapping the Voxel-Wise Effective Connectome in Resting State fMRI
por: Wu, Guo-Rong, et al.
Publicado: (2013) -
Enhanced prefrontal functional–structural networks to support postural control deficits after traumatic brain injury in a pediatric population
por: Diez, Ibai, et al.
Publicado: (2017)