Cargando…
Dynamic properties of simulated brain network models and empirical resting-state data
Brain network models (BNMs) have become a promising theoretical framework for simulating signals that are representative of whole-brain activity such as resting-state fMRI. However, it has been difficult to compare the complex brain activity obtained from simulations to empirical data. Previous stud...
Autores principales: | Kashyap, Amrit, Keilholz, Shella |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370489/ https://www.ncbi.nlm.nih.gov/pubmed/30793089 http://dx.doi.org/10.1162/netn_a_00070 |
Ejemplares similares
-
Brain network constraints and recurrent neural networks reproduce unique trajectories and state transitions seen over the span of minutes in resting-state fMRI
por: Kashyap, Amrit, et al.
Publicado: (2020) -
Comparison of Resting-State Functional MRI Methods for Characterizing Brain Dynamics
por: Maltbie, Eric, et al.
Publicado: (2022) -
A deep learning approach to estimating initial conditions of Brain Network Models in reference to measured fMRI data
por: Kashyap, Amrit, et al.
Publicado: (2023) -
Data driven analysis of low frequency spatio-temporal dynamics in resting state MRI (rsMRI) data
por: Willis, Martha, et al.
Publicado: (2012) -
Resting Brain Fluctuations Are Intrinsically Coupled to Visual Response Dynamics
por: Belloy, Michaël E, et al.
Publicado: (2020)