Cargando…
NRLMFβ: Beta-distribution-rescored neighborhood regularized logistic matrix factorization for improving the performance of drug–target interaction prediction
Techniques for predicting interactions between a drug and a target (protein) are useful for strategic drug repositioning. Neighborhood regularized logistic matrix factorization (NRLMF) is one of the state-of-the-art drug–target interaction prediction methods; it is based on a statistical model using...
Autores principales: | Ban, Tomohiro, Ohue, Masahito, Akiyama, Yutaka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370585/ https://www.ncbi.nlm.nih.gov/pubmed/30793050 http://dx.doi.org/10.1016/j.bbrep.2019.01.008 |
Ejemplares similares
-
LPI-NRLMF: lncRNA-protein interaction prediction by neighborhood regularized logistic matrix factorization
por: Liu, Hongsheng, et al.
Publicado: (2017) -
Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction
por: Liu, Yong, et al.
Publicado: (2016) -
Evaluation of CONSRANK-Like Scoring Functions for Rescoring Ensembles of Protein–Protein Docking Poses
por: Launay, Guillaume, et al.
Publicado: (2020) -
MS(2)Rescore: Data-Driven Rescoring Dramatically Boosts Immunopeptide Identification Rates
por: Declercq, Arthur, et al.
Publicado: (2022) -
Identifying and Exploiting Potential miRNA-Disease Associations With Neighborhood Regularized Logistic Matrix Factorization
por: He, Bin-Sheng, et al.
Publicado: (2018)