Cargando…
Deep Neural Network Models for Predicting Chemically Induced Liver Toxicity Endpoints From Transcriptomic Responses
Improving the accuracy of toxicity prediction models for liver injuries is a key element in evaluating the safety of drugs and chemicals. Mechanism-based information derived from expression (transcriptomic) data, in combination with machine-learning methods, promises to improve the accuracy and robu...
Autores principales: | Wang, Hao, Liu, Ruifeng, Schyman, Patric, Wallqvist, Anders |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370634/ https://www.ncbi.nlm.nih.gov/pubmed/30804783 http://dx.doi.org/10.3389/fphar.2019.00042 |
Ejemplares similares
-
vNN Web Server for ADMET Predictions
por: Schyman, Patric, et al.
Publicado: (2017) -
TOXPANEL: A Gene-Set Analysis Tool to Assess Liver and Kidney Injuries
por: Schyman, Patric, et al.
Publicado: (2021) -
Identification of the Toxicity Pathways Associated With Thioacetamide-Induced Injuries in Rat Liver and Kidney
por: Schyman, Patric, et al.
Publicado: (2018) -
Using the Variable-Nearest Neighbor Method To Identify
P-Glycoprotein Substrates and Inhibitors
por: Schyman, Patric, et al.
Publicado: (2016) -
Assessing Chemical-Induced Liver Injury In Vivo From In Vitro Gene Expression Data in the Rat: The Case of Thioacetamide Toxicity
por: Schyman, Patric, et al.
Publicado: (2019)