Cargando…

Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO(3)

Low dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S = 1/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as spinons, carry fractional spin S = 1/2....

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, L. S., Nikitin, S. E., Wang, Z., Zhu, W., Batista, C. D., Tsvelik, A. M., Samarakoon, A. M., Tennant, D. A., Brando, M., Vasylechko, L., Frontzek, M., Savici, A. T., Sala, G., Ehlers, G., Christianson, A. D., Lumsden, M. D., Podlesnyak, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370837/
https://www.ncbi.nlm.nih.gov/pubmed/30741939
http://dx.doi.org/10.1038/s41467-019-08485-7
_version_ 1783394434662006784
author Wu, L. S.
Nikitin, S. E.
Wang, Z.
Zhu, W.
Batista, C. D.
Tsvelik, A. M.
Samarakoon, A. M.
Tennant, D. A.
Brando, M.
Vasylechko, L.
Frontzek, M.
Savici, A. T.
Sala, G.
Ehlers, G.
Christianson, A. D.
Lumsden, M. D.
Podlesnyak, A.
author_facet Wu, L. S.
Nikitin, S. E.
Wang, Z.
Zhu, W.
Batista, C. D.
Tsvelik, A. M.
Samarakoon, A. M.
Tennant, D. A.
Brando, M.
Vasylechko, L.
Frontzek, M.
Savici, A. T.
Sala, G.
Ehlers, G.
Christianson, A. D.
Lumsden, M. D.
Podlesnyak, A.
author_sort Wu, L. S.
collection PubMed
description Low dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S = 1/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as spinons, carry fractional spin S = 1/2. These fractional modes can be reconfined by the application of a staggered magnetic field. Even though considerable progress has been made in the theoretical understanding of such magnets, experimental realizations of this low-dimensional physics are relatively rare. This is particularly true for rare-earth-based magnets because of the large effective spin anisotropy induced by the combination of strong spin–orbit coupling and crystal field splitting. Here, we demonstrate that the rare-earth perovskite YbAlO(3) provides a realization of a quantum spin S = 1/2 chain material exhibiting both quantum critical Tomonaga–Luttinger liquid behavior and spinon confinement–deconfinement transitions in different regions of magnetic field–temperature phase diagram.
format Online
Article
Text
id pubmed-6370837
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-63708372019-02-13 Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO(3) Wu, L. S. Nikitin, S. E. Wang, Z. Zhu, W. Batista, C. D. Tsvelik, A. M. Samarakoon, A. M. Tennant, D. A. Brando, M. Vasylechko, L. Frontzek, M. Savici, A. T. Sala, G. Ehlers, G. Christianson, A. D. Lumsden, M. D. Podlesnyak, A. Nat Commun Article Low dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S = 1/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as spinons, carry fractional spin S = 1/2. These fractional modes can be reconfined by the application of a staggered magnetic field. Even though considerable progress has been made in the theoretical understanding of such magnets, experimental realizations of this low-dimensional physics are relatively rare. This is particularly true for rare-earth-based magnets because of the large effective spin anisotropy induced by the combination of strong spin–orbit coupling and crystal field splitting. Here, we demonstrate that the rare-earth perovskite YbAlO(3) provides a realization of a quantum spin S = 1/2 chain material exhibiting both quantum critical Tomonaga–Luttinger liquid behavior and spinon confinement–deconfinement transitions in different regions of magnetic field–temperature phase diagram. Nature Publishing Group UK 2019-02-11 /pmc/articles/PMC6370837/ /pubmed/30741939 http://dx.doi.org/10.1038/s41467-019-08485-7 Text en © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Wu, L. S.
Nikitin, S. E.
Wang, Z.
Zhu, W.
Batista, C. D.
Tsvelik, A. M.
Samarakoon, A. M.
Tennant, D. A.
Brando, M.
Vasylechko, L.
Frontzek, M.
Savici, A. T.
Sala, G.
Ehlers, G.
Christianson, A. D.
Lumsden, M. D.
Podlesnyak, A.
Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO(3)
title Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO(3)
title_full Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO(3)
title_fullStr Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO(3)
title_full_unstemmed Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO(3)
title_short Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO(3)
title_sort tomonaga–luttinger liquid behavior and spinon confinement in ybalo(3)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370837/
https://www.ncbi.nlm.nih.gov/pubmed/30741939
http://dx.doi.org/10.1038/s41467-019-08485-7
work_keys_str_mv AT wuls tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3
AT nikitinse tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3
AT wangz tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3
AT zhuw tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3
AT batistacd tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3
AT tsvelikam tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3
AT samarakoonam tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3
AT tennantda tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3
AT brandom tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3
AT vasylechkol tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3
AT frontzekm tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3
AT saviciat tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3
AT salag tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3
AT ehlersg tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3
AT christiansonad tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3
AT lumsdenmd tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3
AT podlesnyaka tomonagaluttingerliquidbehaviorandspinonconfinementinybalo3