Cargando…
Assessment of prostate cancer prognostic Gleason grade group using zonal‐specific features extracted from biparametric MRI using a KNN classifier
PURPOSE: To automatically assess the aggressiveness of prostate cancer (PCa) lesions using zonal‐specific image features extracted from diffusion weighted imaging (DWI) and T2W MRI. METHODS: Region of interest was extracted from DWI (peripheral zone) and T2W MRI (transitional zone and anterior fibro...
Autores principales: | Jensen, Carina, Carl, Jesper, Boesen, Lars, Langkilde, Niels Christian, Østergaard, Lasse Riis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370983/ https://www.ncbi.nlm.nih.gov/pubmed/30712281 http://dx.doi.org/10.1002/acm2.12542 |
Ejemplares similares
-
Ensemble of a subset of kNN classifiers
por: Gul, Asma, et al.
Publicado: (2016) -
QA-kNN: Indoor Localization Based on Quartile Analysis and the kNN Classifier for Wireless Networks
por: Ferreira, David, et al.
Publicado: (2020) -
A new Covid-19 diagnosis strategy using a modified KNN classifier
por: Rabie, Asmaa H., et al.
Publicado: (2023) -
Assessment of the Diagnostic Accuracy of Biparametric Magnetic Resonance Imaging for Prostate Cancer in Biopsy-Naive Men: The Biparametric MRI for Detection of Prostate Cancer (BIDOC) Study
por: Boesen, Lars, et al.
Publicado: (2018) -
Prognostic Utility of the Gleason Grading System Revisions and Histopathological Factors Beyond Gleason Grade
por: Zelic, Renata, et al.
Publicado: (2022)