Cargando…

A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity

Background: The mechanisms responsible for calorie restriction (CR)-induced improvement in insulin sensitivity (IS) have not been fully elucidated. Greater insight can be achieved through deep biological phenotyping of subjects undergoing CR, and integration of big data. Materials and Methods: An in...

Descripción completa

Detalles Bibliográficos
Autores principales: Dao, Maria Carlota, Sokolovska, Nataliya, Brazeilles, Rémi, Affeldt, Séverine, Pelloux, Véronique, Prifti, Edi, Chilloux, Julien, Verger, Eric O., Kayser, Brandon D., Aron-Wisnewsky, Judith, Ichou, Farid, Pujos-Guillot, Estelle, Hoyles, Lesley, Juste, Catherine, Doré, Joël, Dumas, Marc-Emmanuel, Rizkalla, Salwa W., Holmes, Bridget A., Zucker, Jean-Daniel, Clément, Karine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371001/
https://www.ncbi.nlm.nih.gov/pubmed/30804813
http://dx.doi.org/10.3389/fphys.2018.01958
_version_ 1783394473394307072
author Dao, Maria Carlota
Sokolovska, Nataliya
Brazeilles, Rémi
Affeldt, Séverine
Pelloux, Véronique
Prifti, Edi
Chilloux, Julien
Verger, Eric O.
Kayser, Brandon D.
Aron-Wisnewsky, Judith
Ichou, Farid
Pujos-Guillot, Estelle
Hoyles, Lesley
Juste, Catherine
Doré, Joël
Dumas, Marc-Emmanuel
Rizkalla, Salwa W.
Holmes, Bridget A.
Zucker, Jean-Daniel
Clément, Karine
author_facet Dao, Maria Carlota
Sokolovska, Nataliya
Brazeilles, Rémi
Affeldt, Séverine
Pelloux, Véronique
Prifti, Edi
Chilloux, Julien
Verger, Eric O.
Kayser, Brandon D.
Aron-Wisnewsky, Judith
Ichou, Farid
Pujos-Guillot, Estelle
Hoyles, Lesley
Juste, Catherine
Doré, Joël
Dumas, Marc-Emmanuel
Rizkalla, Salwa W.
Holmes, Bridget A.
Zucker, Jean-Daniel
Clément, Karine
author_sort Dao, Maria Carlota
collection PubMed
description Background: The mechanisms responsible for calorie restriction (CR)-induced improvement in insulin sensitivity (IS) have not been fully elucidated. Greater insight can be achieved through deep biological phenotyping of subjects undergoing CR, and integration of big data. Materials and Methods: An integrative approach was applied to investigate associations between change in IS and factors from host, microbiota, and lifestyle after a 6-week CR period in 27 overweight or obese adults (ClinicalTrials.gov: NCT01314690). Partial least squares regression was used to determine associations of change (week 6 – baseline) between IS markers and lifestyle factors (diet and physical activity), subcutaneous adipose tissue (sAT) gene expression, metabolomics of serum, urine and feces, and gut microbiota composition. ScaleNet, a network learning approach based on spectral consensus strategy (SCS, developed by us) was used for reconstruction of biological networks. Results: A spectrum of variables from lifestyle factors (10 nutrients), gut microbiota (10 metagenomics species), and host multi-omics (metabolic features: 84 from serum, 73 from urine, and 131 from feces; and 257 sAT gene probes) most associated with IS were identified. Biological network reconstruction using SCS, highlighted links between changes in IS, serum branched chain amino acids, sAT genes involved in endoplasmic reticulum stress and ubiquitination, and gut metagenomic species (MGS). Linear regression analysis to model how changes of select variables over the CR period contribute to changes in IS, showed greatest contributions from gut MGS and fiber intake. Conclusion: This work has enhanced previous knowledge on links between host glucose homeostasis, lifestyle factors and the gut microbiota, and has identified potential biomarkers that may be used in future studies to predict and improve individual response to weight-loss interventions. Furthermore, this is the first study showing integration of the wide range of data presented herein, identifying 115 variables of interest with respect to IS from the initial input, consisting of 9,986 variables. Clinical Trial Registration: clinicaltrials.gov (NCT01314690).
format Online
Article
Text
id pubmed-6371001
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-63710012019-02-25 A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity Dao, Maria Carlota Sokolovska, Nataliya Brazeilles, Rémi Affeldt, Séverine Pelloux, Véronique Prifti, Edi Chilloux, Julien Verger, Eric O. Kayser, Brandon D. Aron-Wisnewsky, Judith Ichou, Farid Pujos-Guillot, Estelle Hoyles, Lesley Juste, Catherine Doré, Joël Dumas, Marc-Emmanuel Rizkalla, Salwa W. Holmes, Bridget A. Zucker, Jean-Daniel Clément, Karine Front Physiol Physiology Background: The mechanisms responsible for calorie restriction (CR)-induced improvement in insulin sensitivity (IS) have not been fully elucidated. Greater insight can be achieved through deep biological phenotyping of subjects undergoing CR, and integration of big data. Materials and Methods: An integrative approach was applied to investigate associations between change in IS and factors from host, microbiota, and lifestyle after a 6-week CR period in 27 overweight or obese adults (ClinicalTrials.gov: NCT01314690). Partial least squares regression was used to determine associations of change (week 6 – baseline) between IS markers and lifestyle factors (diet and physical activity), subcutaneous adipose tissue (sAT) gene expression, metabolomics of serum, urine and feces, and gut microbiota composition. ScaleNet, a network learning approach based on spectral consensus strategy (SCS, developed by us) was used for reconstruction of biological networks. Results: A spectrum of variables from lifestyle factors (10 nutrients), gut microbiota (10 metagenomics species), and host multi-omics (metabolic features: 84 from serum, 73 from urine, and 131 from feces; and 257 sAT gene probes) most associated with IS were identified. Biological network reconstruction using SCS, highlighted links between changes in IS, serum branched chain amino acids, sAT genes involved in endoplasmic reticulum stress and ubiquitination, and gut metagenomic species (MGS). Linear regression analysis to model how changes of select variables over the CR period contribute to changes in IS, showed greatest contributions from gut MGS and fiber intake. Conclusion: This work has enhanced previous knowledge on links between host glucose homeostasis, lifestyle factors and the gut microbiota, and has identified potential biomarkers that may be used in future studies to predict and improve individual response to weight-loss interventions. Furthermore, this is the first study showing integration of the wide range of data presented herein, identifying 115 variables of interest with respect to IS from the initial input, consisting of 9,986 variables. Clinical Trial Registration: clinicaltrials.gov (NCT01314690). Frontiers Media S.A. 2019-02-05 /pmc/articles/PMC6371001/ /pubmed/30804813 http://dx.doi.org/10.3389/fphys.2018.01958 Text en Copyright © 2019 Dao, Sokolovska, Brazeilles, Affeldt, Pelloux, Prifti, Chilloux, Verger, Kayser, Aron-Wisnewsky, Ichou, Pujos-Guillot, Hoyles, Juste, Doré, Dumas, Rizkalla, Holmes, Zucker, Clément and the MICRO-Obes Consortium. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Dao, Maria Carlota
Sokolovska, Nataliya
Brazeilles, Rémi
Affeldt, Séverine
Pelloux, Véronique
Prifti, Edi
Chilloux, Julien
Verger, Eric O.
Kayser, Brandon D.
Aron-Wisnewsky, Judith
Ichou, Farid
Pujos-Guillot, Estelle
Hoyles, Lesley
Juste, Catherine
Doré, Joël
Dumas, Marc-Emmanuel
Rizkalla, Salwa W.
Holmes, Bridget A.
Zucker, Jean-Daniel
Clément, Karine
A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity
title A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity
title_full A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity
title_fullStr A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity
title_full_unstemmed A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity
title_short A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity
title_sort data integration multi-omics approach to study calorie restriction-induced changes in insulin sensitivity
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371001/
https://www.ncbi.nlm.nih.gov/pubmed/30804813
http://dx.doi.org/10.3389/fphys.2018.01958
work_keys_str_mv AT daomariacarlota adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT sokolovskanataliya adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT brazeillesremi adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT affeldtseverine adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT pellouxveronique adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT priftiedi adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT chillouxjulien adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT vergererico adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT kayserbrandond adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT aronwisnewskyjudith adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT ichoufarid adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT pujosguillotestelle adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT hoyleslesley adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT justecatherine adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT dorejoel adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT dumasmarcemmanuel adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT rizkallasalwaw adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT holmesbridgeta adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT zuckerjeandaniel adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT clementkarine adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT daomariacarlota dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT sokolovskanataliya dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT brazeillesremi dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT affeldtseverine dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT pellouxveronique dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT priftiedi dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT chillouxjulien dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT vergererico dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT kayserbrandond dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT aronwisnewskyjudith dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT ichoufarid dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT pujosguillotestelle dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT hoyleslesley dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT justecatherine dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT dorejoel dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT dumasmarcemmanuel dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT rizkallasalwaw dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT holmesbridgeta dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT zuckerjeandaniel dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT clementkarine dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity
AT dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity