Cargando…
A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity
Background: The mechanisms responsible for calorie restriction (CR)-induced improvement in insulin sensitivity (IS) have not been fully elucidated. Greater insight can be achieved through deep biological phenotyping of subjects undergoing CR, and integration of big data. Materials and Methods: An in...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371001/ https://www.ncbi.nlm.nih.gov/pubmed/30804813 http://dx.doi.org/10.3389/fphys.2018.01958 |
_version_ | 1783394473394307072 |
---|---|
author | Dao, Maria Carlota Sokolovska, Nataliya Brazeilles, Rémi Affeldt, Séverine Pelloux, Véronique Prifti, Edi Chilloux, Julien Verger, Eric O. Kayser, Brandon D. Aron-Wisnewsky, Judith Ichou, Farid Pujos-Guillot, Estelle Hoyles, Lesley Juste, Catherine Doré, Joël Dumas, Marc-Emmanuel Rizkalla, Salwa W. Holmes, Bridget A. Zucker, Jean-Daniel Clément, Karine |
author_facet | Dao, Maria Carlota Sokolovska, Nataliya Brazeilles, Rémi Affeldt, Séverine Pelloux, Véronique Prifti, Edi Chilloux, Julien Verger, Eric O. Kayser, Brandon D. Aron-Wisnewsky, Judith Ichou, Farid Pujos-Guillot, Estelle Hoyles, Lesley Juste, Catherine Doré, Joël Dumas, Marc-Emmanuel Rizkalla, Salwa W. Holmes, Bridget A. Zucker, Jean-Daniel Clément, Karine |
author_sort | Dao, Maria Carlota |
collection | PubMed |
description | Background: The mechanisms responsible for calorie restriction (CR)-induced improvement in insulin sensitivity (IS) have not been fully elucidated. Greater insight can be achieved through deep biological phenotyping of subjects undergoing CR, and integration of big data. Materials and Methods: An integrative approach was applied to investigate associations between change in IS and factors from host, microbiota, and lifestyle after a 6-week CR period in 27 overweight or obese adults (ClinicalTrials.gov: NCT01314690). Partial least squares regression was used to determine associations of change (week 6 – baseline) between IS markers and lifestyle factors (diet and physical activity), subcutaneous adipose tissue (sAT) gene expression, metabolomics of serum, urine and feces, and gut microbiota composition. ScaleNet, a network learning approach based on spectral consensus strategy (SCS, developed by us) was used for reconstruction of biological networks. Results: A spectrum of variables from lifestyle factors (10 nutrients), gut microbiota (10 metagenomics species), and host multi-omics (metabolic features: 84 from serum, 73 from urine, and 131 from feces; and 257 sAT gene probes) most associated with IS were identified. Biological network reconstruction using SCS, highlighted links between changes in IS, serum branched chain amino acids, sAT genes involved in endoplasmic reticulum stress and ubiquitination, and gut metagenomic species (MGS). Linear regression analysis to model how changes of select variables over the CR period contribute to changes in IS, showed greatest contributions from gut MGS and fiber intake. Conclusion: This work has enhanced previous knowledge on links between host glucose homeostasis, lifestyle factors and the gut microbiota, and has identified potential biomarkers that may be used in future studies to predict and improve individual response to weight-loss interventions. Furthermore, this is the first study showing integration of the wide range of data presented herein, identifying 115 variables of interest with respect to IS from the initial input, consisting of 9,986 variables. Clinical Trial Registration: clinicaltrials.gov (NCT01314690). |
format | Online Article Text |
id | pubmed-6371001 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63710012019-02-25 A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity Dao, Maria Carlota Sokolovska, Nataliya Brazeilles, Rémi Affeldt, Séverine Pelloux, Véronique Prifti, Edi Chilloux, Julien Verger, Eric O. Kayser, Brandon D. Aron-Wisnewsky, Judith Ichou, Farid Pujos-Guillot, Estelle Hoyles, Lesley Juste, Catherine Doré, Joël Dumas, Marc-Emmanuel Rizkalla, Salwa W. Holmes, Bridget A. Zucker, Jean-Daniel Clément, Karine Front Physiol Physiology Background: The mechanisms responsible for calorie restriction (CR)-induced improvement in insulin sensitivity (IS) have not been fully elucidated. Greater insight can be achieved through deep biological phenotyping of subjects undergoing CR, and integration of big data. Materials and Methods: An integrative approach was applied to investigate associations between change in IS and factors from host, microbiota, and lifestyle after a 6-week CR period in 27 overweight or obese adults (ClinicalTrials.gov: NCT01314690). Partial least squares regression was used to determine associations of change (week 6 – baseline) between IS markers and lifestyle factors (diet and physical activity), subcutaneous adipose tissue (sAT) gene expression, metabolomics of serum, urine and feces, and gut microbiota composition. ScaleNet, a network learning approach based on spectral consensus strategy (SCS, developed by us) was used for reconstruction of biological networks. Results: A spectrum of variables from lifestyle factors (10 nutrients), gut microbiota (10 metagenomics species), and host multi-omics (metabolic features: 84 from serum, 73 from urine, and 131 from feces; and 257 sAT gene probes) most associated with IS were identified. Biological network reconstruction using SCS, highlighted links between changes in IS, serum branched chain amino acids, sAT genes involved in endoplasmic reticulum stress and ubiquitination, and gut metagenomic species (MGS). Linear regression analysis to model how changes of select variables over the CR period contribute to changes in IS, showed greatest contributions from gut MGS and fiber intake. Conclusion: This work has enhanced previous knowledge on links between host glucose homeostasis, lifestyle factors and the gut microbiota, and has identified potential biomarkers that may be used in future studies to predict and improve individual response to weight-loss interventions. Furthermore, this is the first study showing integration of the wide range of data presented herein, identifying 115 variables of interest with respect to IS from the initial input, consisting of 9,986 variables. Clinical Trial Registration: clinicaltrials.gov (NCT01314690). Frontiers Media S.A. 2019-02-05 /pmc/articles/PMC6371001/ /pubmed/30804813 http://dx.doi.org/10.3389/fphys.2018.01958 Text en Copyright © 2019 Dao, Sokolovska, Brazeilles, Affeldt, Pelloux, Prifti, Chilloux, Verger, Kayser, Aron-Wisnewsky, Ichou, Pujos-Guillot, Hoyles, Juste, Doré, Dumas, Rizkalla, Holmes, Zucker, Clément and the MICRO-Obes Consortium. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Dao, Maria Carlota Sokolovska, Nataliya Brazeilles, Rémi Affeldt, Séverine Pelloux, Véronique Prifti, Edi Chilloux, Julien Verger, Eric O. Kayser, Brandon D. Aron-Wisnewsky, Judith Ichou, Farid Pujos-Guillot, Estelle Hoyles, Lesley Juste, Catherine Doré, Joël Dumas, Marc-Emmanuel Rizkalla, Salwa W. Holmes, Bridget A. Zucker, Jean-Daniel Clément, Karine A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity |
title | A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity |
title_full | A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity |
title_fullStr | A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity |
title_full_unstemmed | A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity |
title_short | A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity |
title_sort | data integration multi-omics approach to study calorie restriction-induced changes in insulin sensitivity |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371001/ https://www.ncbi.nlm.nih.gov/pubmed/30804813 http://dx.doi.org/10.3389/fphys.2018.01958 |
work_keys_str_mv | AT daomariacarlota adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT sokolovskanataliya adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT brazeillesremi adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT affeldtseverine adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT pellouxveronique adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT priftiedi adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT chillouxjulien adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT vergererico adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT kayserbrandond adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT aronwisnewskyjudith adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT ichoufarid adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT pujosguillotestelle adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT hoyleslesley adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT justecatherine adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT dorejoel adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT dumasmarcemmanuel adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT rizkallasalwaw adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT holmesbridgeta adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT zuckerjeandaniel adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT clementkarine adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT adataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT daomariacarlota dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT sokolovskanataliya dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT brazeillesremi dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT affeldtseverine dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT pellouxveronique dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT priftiedi dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT chillouxjulien dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT vergererico dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT kayserbrandond dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT aronwisnewskyjudith dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT ichoufarid dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT pujosguillotestelle dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT hoyleslesley dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT justecatherine dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT dorejoel dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT dumasmarcemmanuel dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT rizkallasalwaw dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT holmesbridgeta dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT zuckerjeandaniel dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT clementkarine dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity AT dataintegrationmultiomicsapproachtostudycalorierestrictioninducedchangesininsulinsensitivity |