Cargando…
Information-Theoretic Intrinsic Plasticity for Online Unsupervised Learning in Spiking Neural Networks
As a self-adaptive mechanism, intrinsic plasticity (IP) plays an essential role in maintaining homeostasis and shaping the dynamics of neural circuits. From a computational point of view, IP has the potential to enable promising non-Hebbian learning in artificial neural networks. While IP based lear...
Autores principales: | Zhang, Wenrui, Li, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371195/ https://www.ncbi.nlm.nih.gov/pubmed/30804736 http://dx.doi.org/10.3389/fnins.2019.00031 |
Ejemplares similares
-
Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity
por: Srinivasa, Narayan, et al.
Publicado: (2014) -
Controlled Forgetting: Targeted Stimulation and Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learning in Spiking Neural Networks
por: Allred, Jason M., et al.
Publicado: (2020) -
Unsupervised Learning and Clustered Connectivity Enhance Reinforcement Learning in Spiking Neural Networks
por: Weidel, Philipp, et al.
Publicado: (2021) -
Unsupervised Learning on Resistive Memory Array Based Spiking Neural Networks
por: Guo, Yilong, et al.
Publicado: (2019) -
A Heterogeneous Spiking Neural Network for Unsupervised Learning of Spatiotemporal Patterns
por: She, Xueyuan, et al.
Publicado: (2021)