Cargando…
Serial electrocardiography to detect newly emerging or aggravating cardiac pathology: a deep-learning approach
BACKGROUND: Serial electrocardiography aims to contribute to electrocardiogram (ECG) diagnosis by comparing the ECG under consideration with a previously made ECG in the same individual. Here, we present a novel algorithm to construct dedicated deep-learning neural networks (NNs) that are specialize...
Autores principales: | Sbrollini, Agnese, De Jongh, Marjolein C., Ter Haar, C. Cato, Treskes, Roderick W., Man, Sumche, Burattini, Laura, Swenne, Cees A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371549/ https://www.ncbi.nlm.nih.gov/pubmed/30755195 http://dx.doi.org/10.1186/s12938-019-0630-9 |
Ejemplares similares
-
An initial exploration of subtraction electrocardiography to detect myocardial ischemia in the prehospital setting
por: ter Haar, Cornelia Cato, et al.
Publicado: (2019) -
Noninvasive Fetal Electrocardiography Part II: Segmented-Beat Modulation Method for Signal Denoising
por: Agostinelli, Angela, et al.
Publicado: (2017) -
Artificial Neural Network for Atrial Fibrillation Identification in Portable Devices
por: Marinucci, Daniele, et al.
Publicado: (2020) -
Noninvasive Fetal Electrocardiography Part I: Pan-Tompkins' Algorithm Adaptation to Fetal R-peak Identification
por: Agostinelli, Angela, et al.
Publicado: (2017) -
Intra-Individual Comparison of Sinus and Ectopic Beats Probing the Ventricular Gradient’s Activation Dependence
por: Schoonderwoerd, Resi M., et al.
Publicado: (2023)