Cargando…
NCBoost classifies pathogenic non-coding variants in Mendelian diseases through supervised learning on purifying selection signals in humans
State-of-the-art methods assessing pathogenic non-coding variants have mostly been characterized on common disease-associated polymorphisms, yet with modest accuracy and strong positional biases. In this study, we curated 737 high-confidence pathogenic non-coding variants associated with monogenic M...
Autores principales: | Caron, Barthélémy, Luo, Yufei, Rausell, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371618/ https://www.ncbi.nlm.nih.gov/pubmed/30744685 http://dx.doi.org/10.1186/s13059-019-1634-2 |
Ejemplares similares
-
A Standardized DNA Variant Scoring System for Pathogenicity Assessments in Mendelian Disorders
por: Karbassi, Izabela, et al.
Publicado: (2015) -
The Impact of Purifying and Background Selection on the Inference of Population History: Problems and Prospects
por: Johri, Parul, et al.
Publicado: (2021) -
Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts
por: Sun, Liang, et al.
Publicado: (2013) -
TAGOOS: genome-wide supervised learning of non-coding loci associated to complex phenotypes
por: González, Aitor, et al.
Publicado: (2019) -
SvAnna: efficient and accurate pathogenicity prediction of coding and regulatory structural variants in long-read genome sequencing
por: Danis, Daniel, et al.
Publicado: (2022)