Cargando…

Use of a Mouse Model of Experimentally Induced Endometriosis to Evaluate and Compare the Effects of Bisphenol A and Bisphenol AF Exposure

BACKGROUND: Endometriosis is a gynecological disease affecting 1 in 10 women of reproductive age. Endometriosis incidence has risen; however, whether this rise is due to disease awareness or environmental contamination is not known. OBJECTIVE: The objective of this study was to determine if bispheno...

Descripción completa

Detalles Bibliográficos
Autores principales: Jones, Rebecca L., Lang, Stephanie A., Kendziorski, Jessica A., Greene, Alexis D., Burns, Katherine A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Environmental Health Perspectives 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371646/
https://www.ncbi.nlm.nih.gov/pubmed/30675821
http://dx.doi.org/10.1289/EHP3802
_version_ 1783394600985034752
author Jones, Rebecca L.
Lang, Stephanie A.
Kendziorski, Jessica A.
Greene, Alexis D.
Burns, Katherine A.
author_facet Jones, Rebecca L.
Lang, Stephanie A.
Kendziorski, Jessica A.
Greene, Alexis D.
Burns, Katherine A.
author_sort Jones, Rebecca L.
collection PubMed
description BACKGROUND: Endometriosis is a gynecological disease affecting 1 in 10 women of reproductive age. Endometriosis incidence has risen; however, whether this rise is due to disease awareness or environmental contamination is not known. OBJECTIVE: The objective of this study was to determine if bisphenol A (BPA) or bisphenol AF (BPAF) potentiate the development of endometriosis and if hormonal status alters how toxicant exposure affects disease. METHODS: A mouse model of endometriosis, where minced uterine tissue is injected into the peritoneal cavity of a host mouse, was used to examine the effects of BPA and BPAF on endometriosis lesion development in ovariectomized and hormonally intact mice. BPA and BPAF were delivered through diet to include no-observed-adverse-effect-level (NOAEL) and the low-observed-adverse-effect-level (LOAEL) exposure levels. After six weeks (at necropsy), lesions, ovaries, and blood were collected to examine characteristics, gene expression, and hormonal regulation. RESULTS: BPA and BPAF treatments affected endometriosis in a manner specific to dose and hormonal status of the host mouse. Estrogen and endometriosis-mediated differences in lesion target gene expression also depended on hormonal status. In intact mice, ovarian steroidogenic pathways were disrupted, progesterone levels were lowered, and atretic oocyte numbers were higher with toxicant exposure. BPAF, more so than BPA, resulted in more endometriosis lesion growth, but both toxicants disrupted normal ovarian signaling. CONCLUSION: These findings further our understanding of the effects and hormonal impacts of BPA and BPAF on endometriosis perturbation in ovariectomized and hormonally intact mice. BPAF appeared to be similar if not more estrogenic than BPA and may be affecting an environmental contribution of the increased incidence of endometriosis. https://doi.org/10.1289/EHP3802
format Online
Article
Text
id pubmed-6371646
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Environmental Health Perspectives
record_format MEDLINE/PubMed
spelling pubmed-63716462019-05-02 Use of a Mouse Model of Experimentally Induced Endometriosis to Evaluate and Compare the Effects of Bisphenol A and Bisphenol AF Exposure Jones, Rebecca L. Lang, Stephanie A. Kendziorski, Jessica A. Greene, Alexis D. Burns, Katherine A. Environ Health Perspect Research BACKGROUND: Endometriosis is a gynecological disease affecting 1 in 10 women of reproductive age. Endometriosis incidence has risen; however, whether this rise is due to disease awareness or environmental contamination is not known. OBJECTIVE: The objective of this study was to determine if bisphenol A (BPA) or bisphenol AF (BPAF) potentiate the development of endometriosis and if hormonal status alters how toxicant exposure affects disease. METHODS: A mouse model of endometriosis, where minced uterine tissue is injected into the peritoneal cavity of a host mouse, was used to examine the effects of BPA and BPAF on endometriosis lesion development in ovariectomized and hormonally intact mice. BPA and BPAF were delivered through diet to include no-observed-adverse-effect-level (NOAEL) and the low-observed-adverse-effect-level (LOAEL) exposure levels. After six weeks (at necropsy), lesions, ovaries, and blood were collected to examine characteristics, gene expression, and hormonal regulation. RESULTS: BPA and BPAF treatments affected endometriosis in a manner specific to dose and hormonal status of the host mouse. Estrogen and endometriosis-mediated differences in lesion target gene expression also depended on hormonal status. In intact mice, ovarian steroidogenic pathways were disrupted, progesterone levels were lowered, and atretic oocyte numbers were higher with toxicant exposure. BPAF, more so than BPA, resulted in more endometriosis lesion growth, but both toxicants disrupted normal ovarian signaling. CONCLUSION: These findings further our understanding of the effects and hormonal impacts of BPA and BPAF on endometriosis perturbation in ovariectomized and hormonally intact mice. BPAF appeared to be similar if not more estrogenic than BPA and may be affecting an environmental contribution of the increased incidence of endometriosis. https://doi.org/10.1289/EHP3802 Environmental Health Perspectives 2018-12-06 /pmc/articles/PMC6371646/ /pubmed/30675821 http://dx.doi.org/10.1289/EHP3802 Text en EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted.
spellingShingle Research
Jones, Rebecca L.
Lang, Stephanie A.
Kendziorski, Jessica A.
Greene, Alexis D.
Burns, Katherine A.
Use of a Mouse Model of Experimentally Induced Endometriosis to Evaluate and Compare the Effects of Bisphenol A and Bisphenol AF Exposure
title Use of a Mouse Model of Experimentally Induced Endometriosis to Evaluate and Compare the Effects of Bisphenol A and Bisphenol AF Exposure
title_full Use of a Mouse Model of Experimentally Induced Endometriosis to Evaluate and Compare the Effects of Bisphenol A and Bisphenol AF Exposure
title_fullStr Use of a Mouse Model of Experimentally Induced Endometriosis to Evaluate and Compare the Effects of Bisphenol A and Bisphenol AF Exposure
title_full_unstemmed Use of a Mouse Model of Experimentally Induced Endometriosis to Evaluate and Compare the Effects of Bisphenol A and Bisphenol AF Exposure
title_short Use of a Mouse Model of Experimentally Induced Endometriosis to Evaluate and Compare the Effects of Bisphenol A and Bisphenol AF Exposure
title_sort use of a mouse model of experimentally induced endometriosis to evaluate and compare the effects of bisphenol a and bisphenol af exposure
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371646/
https://www.ncbi.nlm.nih.gov/pubmed/30675821
http://dx.doi.org/10.1289/EHP3802
work_keys_str_mv AT jonesrebeccal useofamousemodelofexperimentallyinducedendometriosistoevaluateandcomparetheeffectsofbisphenolaandbisphenolafexposure
AT langstephaniea useofamousemodelofexperimentallyinducedendometriosistoevaluateandcomparetheeffectsofbisphenolaandbisphenolafexposure
AT kendziorskijessicaa useofamousemodelofexperimentallyinducedendometriosistoevaluateandcomparetheeffectsofbisphenolaandbisphenolafexposure
AT greenealexisd useofamousemodelofexperimentallyinducedendometriosistoevaluateandcomparetheeffectsofbisphenolaandbisphenolafexposure
AT burnskatherinea useofamousemodelofexperimentallyinducedendometriosistoevaluateandcomparetheeffectsofbisphenolaandbisphenolafexposure