Cargando…
Estimates of the Global Burden of Ambient [Formula: see text] , Ozone, and [Formula: see text] on Asthma Incidence and Emergency Room Visits
BACKGROUND: Asthma is the most prevalent chronic respiratory disease worldwide, affecting 358 million people in 2015. Ambient air pollution exacerbates asthma among populations around the world and may also contribute to new-onset asthma. OBJECTIVES: We aimed to estimate the number of asthma emergen...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Environmental Health Perspectives
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371661/ https://www.ncbi.nlm.nih.gov/pubmed/30392403 http://dx.doi.org/10.1289/EHP3766 |
_version_ | 1783394604746276864 |
---|---|
author | Anenberg, Susan C. Henze, Daven K. Tinney, Veronica Kinney, Patrick L. Raich, William Fann, Neal Malley, Chris S. Roman, Henry Lamsal, Lok Duncan, Bryan Martin, Randall V. van Donkelaar, Aaron Brauer, Michael Doherty, Ruth Jonson, Jan Eiof Davila, Yanko Sudo, Kengo Kuylenstierna, Johan C.I. |
author_facet | Anenberg, Susan C. Henze, Daven K. Tinney, Veronica Kinney, Patrick L. Raich, William Fann, Neal Malley, Chris S. Roman, Henry Lamsal, Lok Duncan, Bryan Martin, Randall V. van Donkelaar, Aaron Brauer, Michael Doherty, Ruth Jonson, Jan Eiof Davila, Yanko Sudo, Kengo Kuylenstierna, Johan C.I. |
author_sort | Anenberg, Susan C. |
collection | PubMed |
description | BACKGROUND: Asthma is the most prevalent chronic respiratory disease worldwide, affecting 358 million people in 2015. Ambient air pollution exacerbates asthma among populations around the world and may also contribute to new-onset asthma. OBJECTIVES: We aimed to estimate the number of asthma emergency room visits and new onset asthma cases globally attributable to fine particulate matter ([Formula: see text]), ozone, and nitrogen dioxide ([Formula: see text]) concentrations. METHODS: We used epidemiological health impact functions combined with data describing population, baseline asthma incidence and prevalence, and pollutant concentrations. We constructed a new dataset of national and regional emergency room visit rates among people with asthma using published survey data. RESULTS: We estimated that 9–23 million and 5–10 million annual asthma emergency room visits globally in 2015 could be attributable to ozone and [Formula: see text] , respectively, representing 8–20% and 4–9% of the annual number of global visits, respectively. The range reflects the application of central risk estimates from different epidemiological meta-analyses. Anthropogenic emissions were responsible for [Formula: see text] and 73% of ozone and [Formula: see text] impacts, respectively. Remaining impacts were attributable to naturally occurring ozone precursor emissions (e.g., from vegetation, lightning) and [Formula: see text] (e.g., dust, sea salt), though several of these sources are also influenced by humans. The largest impacts were estimated in China and India. CONCLUSIONS: These findings estimate the magnitude of the global asthma burden that could be avoided by reducing ambient air pollution. We also identified key uncertainties and data limitations to be addressed to enable refined estimation. https://doi.org/10.1289/EHP3766 |
format | Online Article Text |
id | pubmed-6371661 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Environmental Health Perspectives |
record_format | MEDLINE/PubMed |
spelling | pubmed-63716612019-02-14 Estimates of the Global Burden of Ambient [Formula: see text] , Ozone, and [Formula: see text] on Asthma Incidence and Emergency Room Visits Anenberg, Susan C. Henze, Daven K. Tinney, Veronica Kinney, Patrick L. Raich, William Fann, Neal Malley, Chris S. Roman, Henry Lamsal, Lok Duncan, Bryan Martin, Randall V. van Donkelaar, Aaron Brauer, Michael Doherty, Ruth Jonson, Jan Eiof Davila, Yanko Sudo, Kengo Kuylenstierna, Johan C.I. Environ Health Perspect Research BACKGROUND: Asthma is the most prevalent chronic respiratory disease worldwide, affecting 358 million people in 2015. Ambient air pollution exacerbates asthma among populations around the world and may also contribute to new-onset asthma. OBJECTIVES: We aimed to estimate the number of asthma emergency room visits and new onset asthma cases globally attributable to fine particulate matter ([Formula: see text]), ozone, and nitrogen dioxide ([Formula: see text]) concentrations. METHODS: We used epidemiological health impact functions combined with data describing population, baseline asthma incidence and prevalence, and pollutant concentrations. We constructed a new dataset of national and regional emergency room visit rates among people with asthma using published survey data. RESULTS: We estimated that 9–23 million and 5–10 million annual asthma emergency room visits globally in 2015 could be attributable to ozone and [Formula: see text] , respectively, representing 8–20% and 4–9% of the annual number of global visits, respectively. The range reflects the application of central risk estimates from different epidemiological meta-analyses. Anthropogenic emissions were responsible for [Formula: see text] and 73% of ozone and [Formula: see text] impacts, respectively. Remaining impacts were attributable to naturally occurring ozone precursor emissions (e.g., from vegetation, lightning) and [Formula: see text] (e.g., dust, sea salt), though several of these sources are also influenced by humans. The largest impacts were estimated in China and India. CONCLUSIONS: These findings estimate the magnitude of the global asthma burden that could be avoided by reducing ambient air pollution. We also identified key uncertainties and data limitations to be addressed to enable refined estimation. https://doi.org/10.1289/EHP3766 Environmental Health Perspectives 2018-10-24 /pmc/articles/PMC6371661/ /pubmed/30392403 http://dx.doi.org/10.1289/EHP3766 Text en EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted. |
spellingShingle | Research Anenberg, Susan C. Henze, Daven K. Tinney, Veronica Kinney, Patrick L. Raich, William Fann, Neal Malley, Chris S. Roman, Henry Lamsal, Lok Duncan, Bryan Martin, Randall V. van Donkelaar, Aaron Brauer, Michael Doherty, Ruth Jonson, Jan Eiof Davila, Yanko Sudo, Kengo Kuylenstierna, Johan C.I. Estimates of the Global Burden of Ambient [Formula: see text] , Ozone, and [Formula: see text] on Asthma Incidence and Emergency Room Visits |
title | Estimates of the Global Burden of Ambient [Formula: see text] , Ozone, and [Formula: see text] on Asthma Incidence and Emergency Room Visits |
title_full | Estimates of the Global Burden of Ambient [Formula: see text] , Ozone, and [Formula: see text] on Asthma Incidence and Emergency Room Visits |
title_fullStr | Estimates of the Global Burden of Ambient [Formula: see text] , Ozone, and [Formula: see text] on Asthma Incidence and Emergency Room Visits |
title_full_unstemmed | Estimates of the Global Burden of Ambient [Formula: see text] , Ozone, and [Formula: see text] on Asthma Incidence and Emergency Room Visits |
title_short | Estimates of the Global Burden of Ambient [Formula: see text] , Ozone, and [Formula: see text] on Asthma Incidence and Emergency Room Visits |
title_sort | estimates of the global burden of ambient [formula: see text] , ozone, and [formula: see text] on asthma incidence and emergency room visits |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371661/ https://www.ncbi.nlm.nih.gov/pubmed/30392403 http://dx.doi.org/10.1289/EHP3766 |
work_keys_str_mv | AT anenbergsusanc estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT henzedavenk estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT tinneyveronica estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT kinneypatrickl estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT raichwilliam estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT fannneal estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT malleychriss estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT romanhenry estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT lamsallok estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT duncanbryan estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT martinrandallv estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT vandonkelaaraaron estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT brauermichael estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT dohertyruth estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT jonsonjaneiof estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT davilayanko estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT sudokengo estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits AT kuylenstiernajohanci estimatesoftheglobalburdenofambientformulaseetextozoneandformulaseetextonasthmaincidenceandemergencyroomvisits |