Cargando…
Characterization of deep neural network features by decodability from human brain activity
Achievements of near human-level performance in object recognition by deep neural networks (DNNs) have triggered a flood of comparative studies between the brain and DNNs. Using a DNN as a proxy for hierarchical visual representations, our recent study found that human brain activity patterns measur...
Autores principales: | Horikawa, Tomoyasu, Aoki, Shuntaro C., Tsukamoto, Mitsuaki, Kamitani, Yukiyasu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371890/ https://www.ncbi.nlm.nih.gov/pubmed/30747910 http://dx.doi.org/10.1038/sdata.2019.12 |
Ejemplares similares
-
Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features
por: Horikawa, Tomoyasu, et al.
Publicado: (2017) -
Generic decoding of seen and imagined objects using hierarchical visual features
por: Horikawa, Tomoyasu, et al.
Publicado: (2017) -
Brain hierarchy score: Which deep neural networks are hierarchically brain-like?
por: Nonaka, Soma, et al.
Publicado: (2021) -
Sparse Ordinal Logistic Regression and Its Application to Brain Decoding
por: Satake, Emi, et al.
Publicado: (2018) -
Deep image reconstruction from human brain activity
por: Shen, Guohua, et al.
Publicado: (2019)