Cargando…

STDP Allows Close-to-Optimal Spatiotemporal Spike Pattern Detection by Single Coincidence Detector Neurons

Repeating spatiotemporal spike patterns exist and carry information. How this information is extracted by downstream neurons is unclear. Here we theoretically investigate to what extent a single cell could detect a given spike pattern and what the optimal parameters to do so are, in particular the m...

Descripción completa

Detalles Bibliográficos
Autor principal: Masquelier, Timothée
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372004/
https://www.ncbi.nlm.nih.gov/pubmed/28668487
http://dx.doi.org/10.1016/j.neuroscience.2017.06.032
Descripción
Sumario:Repeating spatiotemporal spike patterns exist and carry information. How this information is extracted by downstream neurons is unclear. Here we theoretically investigate to what extent a single cell could detect a given spike pattern and what the optimal parameters to do so are, in particular the membrane time constant [Formula: see text]. Using a leaky integrate-and-fire (LIF) neuron with homogeneous Poisson input, we computed this optimum analytically. We found that a relatively small [Formula: see text] (at most a few tens of ms) is usually optimal, even when the pattern is much longer. This is somewhat counter-intuitive as the resulting detector ignores most of the pattern, due to its fast memory decay. Next, we wondered if spike-timing-dependent plasticity (STDP) could enable a neuron to reach the theoretical optimum. We simulated a LIF equipped with additive STDP, and repeatedly exposed it to a given input spike pattern. As in previous studies, the LIF progressively became selective to the repeating pattern with no supervision, even when the pattern was embedded in Poisson activity. Here we show that, using certain STDP parameters, the resulting pattern detector is optimal. These mechanisms may explain how humans learn repeating sensory sequences. Long sequences could be recognized thanks to coincidence detectors working at a much shorter timescale. This is consistent with the fact that recognition is still possible if a sound sequence is compressed, played backward, or scrambled using 10-ms bins. Coincidence detection is a simple yet powerful mechanism, which could be the main function of neurons in the brain.