Cargando…
High-resolution data-driven model of the mouse connectome
Knowledge of mesoscopic brain connectivity is important for understanding inter- and intraregion information processing. Models of structural connectivity are typically constructed and analyzed with the assumption that regions are homogeneous. We instead use the Allen Mouse Brain Connectivity Atlas...
Autores principales: | Knox, Joseph E., Harris, Kameron Decker, Graddis, Nile, Whitesell, Jennifer D., Zeng, Hongkui, Harris, Julie A., Shea-Brown, Eric, Mihalas, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372022/ https://www.ncbi.nlm.nih.gov/pubmed/30793081 http://dx.doi.org/10.1162/netn_a_00066 |
Ejemplares similares
-
Greedy low-rank algorithm for spatial connectome regression
por: Kürschner, Patrick, et al.
Publicado: (2019) -
Regional, Layer, and Cell-Type-Specific Connectivity of the Mouse Default Mode Network
por: Whitesell, Jennifer D., et al.
Publicado: (2021) -
Individual structural features constrain the mouse functional connectome
por: Melozzi, Francesca, et al.
Publicado: (2019) -
Identification of genetic markers for cortical areas using a Random Forest classification routine and the Allen Mouse Brain Atlas
por: Weed, Natalie, et al.
Publicado: (2019) -
MouseNet: A biologically constrained convolutional neural network model for the mouse visual cortex
por: Shi, Jianghong, et al.
Publicado: (2022)