Cargando…

Salmonella-vectored vaccine delivering three Clostridium perfringens antigens protects poultry against necrotic enteritis

Necrotic enteritis is an economically important poultry disease caused by the bacterium Clostridium perfringens. There are currently no necrotic enteritis vaccines commercially available for use in broiler birds, the most important target population. Salmonella-vectored vaccines represent a convenie...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilde, Shyra, Jiang, Yanlong, Tafoya, Amanda M., Horsman, Jamie, Yousif, Miranda, Vazquez, Luis Armando, Roland, Kenneth L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372158/
https://www.ncbi.nlm.nih.gov/pubmed/30753181
http://dx.doi.org/10.1371/journal.pone.0197721
Descripción
Sumario:Necrotic enteritis is an economically important poultry disease caused by the bacterium Clostridium perfringens. There are currently no necrotic enteritis vaccines commercially available for use in broiler birds, the most important target population. Salmonella-vectored vaccines represent a convenient and effective option for controlling this disease. We used a single attenuated Salmonella vaccine strain, engineered to lyse within the host, to deliver up to three C. perfringens antigens. Two of the antigens were toxoids, based on C. perfringens α-toxin and NetB toxin. The third antigen was fructose-1,6-bisphosphate aldolase (Fba), a metabolic enzyme with an unknown role in virulence. Oral immunization with a single Salmonella vaccine strain producing either Fba, α-toxoid and NetB toxoid, or all three antigens, was immunogenic, inducing serum, cellular and mucosal responses against Salmonella and the vectored C. perfringens antigens. All three vaccine strains were partially protective against virulent C. perfringens challenge. The strains delivering Fba only or all three antigens provided the best protection. We also demonstrate that both toxins and Fba are present on the C. perfringens cell surface. The presence of Fba on the cell surface suggests that Fba may function as an adhesin.