Cargando…

Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway

Candida albicans is among the most common causes of human fungal infections and is an important source of mortality. C. albicans is able to diminish its detection by innate immune cells through masking of β (1,3)-glucan in the inner cell wall with an outer layer of heavily glycosylated mannoproteins...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Tian, Jackson, Joseph W., Tams, Robert N., Davis, Sarah E., Sparer, Timothy E., Reynolds, Todd B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372213/
https://www.ncbi.nlm.nih.gov/pubmed/30703081
http://dx.doi.org/10.1371/journal.pgen.1007892
_version_ 1783394702188347392
author Chen, Tian
Jackson, Joseph W.
Tams, Robert N.
Davis, Sarah E.
Sparer, Timothy E.
Reynolds, Todd B.
author_facet Chen, Tian
Jackson, Joseph W.
Tams, Robert N.
Davis, Sarah E.
Sparer, Timothy E.
Reynolds, Todd B.
author_sort Chen, Tian
collection PubMed
description Candida albicans is among the most common causes of human fungal infections and is an important source of mortality. C. albicans is able to diminish its detection by innate immune cells through masking of β (1,3)-glucan in the inner cell wall with an outer layer of heavily glycosylated mannoproteins (mannan). However, mutations or drugs that disrupt the cell wall can lead to exposure of β (1,3)-glucan (unmasking) and enhanced detection by innate immune cells through receptors like Dectin-1, the C-type signaling lectin. Previously, our lab showed that the pathway for synthesizing the phospholipid phosphatidylserine (PS) plays a role in β (1,3)-glucan masking. The homozygous PS synthase knockout mutant, cho1Δ/Δ, exhibits increased exposure of β (1,3)-glucan. Several Mitogen Activated Protein Kinase (MAPK) pathways and their upstream Rho-type small GTPases are important for regulating cell wall biogenesis and remodeling. In the cho1Δ/Δ mutant, both the Cek1 and Mkc1 MAPKs are constitutively activated, and they act downstream of the small GTPases Cdc42 and Rho1, respectively. In addition, Cdc42 activity is up-regulated in cho1Δ/Δ. Thus, it was hypothesized that activation of Cdc42 or Rho1 and their downstream kinases cause unmasking. Disruption of MKC1 does not decrease unmasking in cho1Δ/Δ, and hyperactivation of Rho1 in wild-type cells increases unmasking and activation of both Cek1 and Mkc1. Moreover, independent hyperactivation of the MAP kinase kinase kinase Ste11 in wild-type cells leads to Cek1 activation and increased β (1,3)-glucan exposure. Thus, upregulation of the Cek1 MAPK pathway causes unmasking, and may be responsible for unmasking in cho1Δ/Δ.
format Online
Article
Text
id pubmed-6372213
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-63722132019-03-01 Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway Chen, Tian Jackson, Joseph W. Tams, Robert N. Davis, Sarah E. Sparer, Timothy E. Reynolds, Todd B. PLoS Genet Research Article Candida albicans is among the most common causes of human fungal infections and is an important source of mortality. C. albicans is able to diminish its detection by innate immune cells through masking of β (1,3)-glucan in the inner cell wall with an outer layer of heavily glycosylated mannoproteins (mannan). However, mutations or drugs that disrupt the cell wall can lead to exposure of β (1,3)-glucan (unmasking) and enhanced detection by innate immune cells through receptors like Dectin-1, the C-type signaling lectin. Previously, our lab showed that the pathway for synthesizing the phospholipid phosphatidylserine (PS) plays a role in β (1,3)-glucan masking. The homozygous PS synthase knockout mutant, cho1Δ/Δ, exhibits increased exposure of β (1,3)-glucan. Several Mitogen Activated Protein Kinase (MAPK) pathways and their upstream Rho-type small GTPases are important for regulating cell wall biogenesis and remodeling. In the cho1Δ/Δ mutant, both the Cek1 and Mkc1 MAPKs are constitutively activated, and they act downstream of the small GTPases Cdc42 and Rho1, respectively. In addition, Cdc42 activity is up-regulated in cho1Δ/Δ. Thus, it was hypothesized that activation of Cdc42 or Rho1 and their downstream kinases cause unmasking. Disruption of MKC1 does not decrease unmasking in cho1Δ/Δ, and hyperactivation of Rho1 in wild-type cells increases unmasking and activation of both Cek1 and Mkc1. Moreover, independent hyperactivation of the MAP kinase kinase kinase Ste11 in wild-type cells leads to Cek1 activation and increased β (1,3)-glucan exposure. Thus, upregulation of the Cek1 MAPK pathway causes unmasking, and may be responsible for unmasking in cho1Δ/Δ. Public Library of Science 2019-01-31 /pmc/articles/PMC6372213/ /pubmed/30703081 http://dx.doi.org/10.1371/journal.pgen.1007892 Text en © 2019 Chen et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Chen, Tian
Jackson, Joseph W.
Tams, Robert N.
Davis, Sarah E.
Sparer, Timothy E.
Reynolds, Todd B.
Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway
title Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway
title_full Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway
title_fullStr Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway
title_full_unstemmed Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway
title_short Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway
title_sort exposure of candida albicans β (1,3)-glucan is promoted by activation of the cek1 pathway
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372213/
https://www.ncbi.nlm.nih.gov/pubmed/30703081
http://dx.doi.org/10.1371/journal.pgen.1007892
work_keys_str_mv AT chentian exposureofcandidaalbicansb13glucanispromotedbyactivationofthecek1pathway
AT jacksonjosephw exposureofcandidaalbicansb13glucanispromotedbyactivationofthecek1pathway
AT tamsrobertn exposureofcandidaalbicansb13glucanispromotedbyactivationofthecek1pathway
AT davissarahe exposureofcandidaalbicansb13glucanispromotedbyactivationofthecek1pathway
AT sparertimothye exposureofcandidaalbicansb13glucanispromotedbyactivationofthecek1pathway
AT reynoldstoddb exposureofcandidaalbicansb13glucanispromotedbyactivationofthecek1pathway