Cargando…
Defining host–pathogen interactions employing an artificial intelligence workflow
For image-based infection biology, accurate unbiased quantification of host–pathogen interactions is essential, yet often performed manually or using limited enumeration employing simple image analysis algorithms based on image segmentation. Host protein recruitment to pathogens is often refractory...
Autores principales: | Fisch, Daniel, Yakimovich, Artur, Clough, Barbara, Wright, Joseph, Bunyan, Monique, Howell, Michael, Mercer, Jason, Frickel, Eva |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372283/ https://www.ncbi.nlm.nih.gov/pubmed/30744806 http://dx.doi.org/10.7554/eLife.40560 |
Ejemplares similares
-
Machine Learning and Artificial Intelligence for the Prediction of Host–Pathogen Interactions: A Viral Case
por: Yakimovich, Artur
Publicado: (2021) -
Mimicry Embedding Facilitates Advanced Neural Network Training for Image-Based Pathogen Detection
por: Yakimovich, Artur, et al.
Publicado: (2020) -
mSphere of Influence: the Rise of Artificial Intelligence in Infection Biology
por: Yakimovich, Artur
Publicado: (2019) -
Human immunity to Toxoplasma gondii
por: Fisch, Daniel, et al.
Publicado: (2019) -
Implementing robotics and artificial intelligence
por: Sebastian, Sujith
Publicado: (2022)