Cargando…

A galling insect activates plant reproductive programs during gall development

Many insect species have acquired the ability to redirect plant development to form unique organs called galls, which provide these insects with unique, enhanced food and protection from enemies and the elements. Many galls resemble flowers or fruits, suggesting that elements of reproductive develop...

Descripción completa

Detalles Bibliográficos
Autores principales: Schultz, Jack C., Edger, Patrick P., Body, Mélanie J. A., Appel, Heidi M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372598/
https://www.ncbi.nlm.nih.gov/pubmed/30755671
http://dx.doi.org/10.1038/s41598-018-38475-6
Descripción
Sumario:Many insect species have acquired the ability to redirect plant development to form unique organs called galls, which provide these insects with unique, enhanced food and protection from enemies and the elements. Many galls resemble flowers or fruits, suggesting that elements of reproductive development may be involved. We tested this hypothesis using RNA sequencing to quantify the transcriptional responses of wild grapevine (Vitis riparia) leaves to a galling parasite, phylloxera (Daktulosphaira vitifoliae). If development of reproductive structures is part of gall formation, we expected to find significantly elevated expression of genes involved in flower and/or fruit development in developing galls as opposed to ungalled leaves. We found that reproductive gene ontology categories were significantly enriched in developing galls, and that expression of many candidate genes involved in floral development were significantly increased, particularly in later gall stages. The patterns of gene expression found in galls suggest that phylloxera exploits vascular cambium to provide meristematic tissue and redirects leaf development towards formation of carpels. The phylloxera leaf gall appears to be phenotypically and transcriptionally similar to the carpel, due to the parasite hijacking underlying genetic machinery in the host plant.