Cargando…
Using Memristors for Robust Local Learning of Hardware Restricted Boltzmann Machines
One of the biggest stakes in nanoelectronics today is to meet the needs of Artificial Intelligence by designing hardware neural networks which, by fusing computation and memory, process and learn from data with limited energy. For this purpose, memristive devices are excellent candidates to emulate...
Autores principales: | Ernoult, Maxence, Grollier, Julie, Querlioz, Damien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372620/ https://www.ncbi.nlm.nih.gov/pubmed/30755662 http://dx.doi.org/10.1038/s41598-018-38181-3 |
Ejemplares similares
-
Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing Its Gradient Estimator Bias
por: Laborieux, Axel, et al.
Publicado: (2021) -
EqSpike: spike-driven equilibrium propagation for neuromorphic implementations
por: Martin, Erwann, et al.
Publicado: (2021) -
Synaptic metaplasticity in binarized neural networks
por: Laborieux, Axel, et al.
Publicado: (2021) -
Binding events through the mutual synchronization of spintronic nano-neurons
por: Romera, Miguel, et al.
Publicado: (2022) -
Privacy-Preserving Restricted Boltzmann Machine
por: Li, Yu, et al.
Publicado: (2014)