Cargando…

Orphan Genes Shared by Pathogenic Genomes Are More Associated with Bacterial Pathogenicity

Orphan genes (also known as ORFans [i.e., orphan open reading frames]) are new genes that enable an organism to adapt to its specific living environment. Our focus in this study is to compare ORFans between pathogens (P) and nonpathogens (NP) of the same genus. Using the pangenome idea, we have iden...

Descripción completa

Detalles Bibliográficos
Autores principales: Entwistle, Sarah, Li, Xueqiong, Yin, Yanbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372840/
https://www.ncbi.nlm.nih.gov/pubmed/30801025
http://dx.doi.org/10.1128/mSystems.00290-18
_version_ 1783394843250130944
author Entwistle, Sarah
Li, Xueqiong
Yin, Yanbin
author_facet Entwistle, Sarah
Li, Xueqiong
Yin, Yanbin
author_sort Entwistle, Sarah
collection PubMed
description Orphan genes (also known as ORFans [i.e., orphan open reading frames]) are new genes that enable an organism to adapt to its specific living environment. Our focus in this study is to compare ORFans between pathogens (P) and nonpathogens (NP) of the same genus. Using the pangenome idea, we have identified 130,169 ORFans in nine bacterial genera (505 genomes) and classified these ORFans into four groups: (i) SS-ORFans (P), which are only found in a single pathogenic genome; (ii) SS-ORFans (NP), which are only found in a single nonpathogenic genome; (iii) PS-ORFans (P), which are found in multiple pathogenic genomes; and (iv) NS-ORFans (NP), which are found in multiple nonpathogenic genomes. Within the same genus, pathogens do not always have more genes, more ORFans, or more pathogenicity-related genes (PRGs)—including prophages, pathogenicity islands (PAIs), virulence factors (VFs), and horizontal gene transfers (HGTs)—than nonpathogens. Interestingly, in pathogens of the nine genera, the percentages of PS-ORFans are consistently higher than those of SS-ORFans, which is not true in nonpathogens. Similarly, in pathogens of the nine genera, the percentages of PS-ORFans matching the four types of PRGs are also always higher than those of SS-ORFans, but this is not true in nonpathogens. All of these findings suggest the greater importance of PS-ORFans for bacterial pathogenicity. IMPORTANCE Recent pangenome analyses of numerous bacterial species have suggested that each genome of a single species may have a significant fraction of its gene content unique or shared by a very few genomes (i.e., ORFans). We selected nine bacterial genera, each containing at least five pathogenic and five nonpathogenic genomes, to compare their ORFans in relation to pathogenicity-related genes. Pathogens in these genera are known to cause a number of common and devastating human diseases such as pneumonia, diphtheria, melioidosis, and tuberculosis. Thus, they are worthy of in-depth systems microbiology investigations, including the comparative study of ORFans between pathogens and nonpathogens. We provide direct evidence to suggest that ORFans shared by more pathogens are more associated with pathogenicity-related genes and thus are more important targets for development of new diagnostic markers or therapeutic drugs for bacterial infectious diseases.
format Online
Article
Text
id pubmed-6372840
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-63728402019-02-22 Orphan Genes Shared by Pathogenic Genomes Are More Associated with Bacterial Pathogenicity Entwistle, Sarah Li, Xueqiong Yin, Yanbin mSystems Research Article Orphan genes (also known as ORFans [i.e., orphan open reading frames]) are new genes that enable an organism to adapt to its specific living environment. Our focus in this study is to compare ORFans between pathogens (P) and nonpathogens (NP) of the same genus. Using the pangenome idea, we have identified 130,169 ORFans in nine bacterial genera (505 genomes) and classified these ORFans into four groups: (i) SS-ORFans (P), which are only found in a single pathogenic genome; (ii) SS-ORFans (NP), which are only found in a single nonpathogenic genome; (iii) PS-ORFans (P), which are found in multiple pathogenic genomes; and (iv) NS-ORFans (NP), which are found in multiple nonpathogenic genomes. Within the same genus, pathogens do not always have more genes, more ORFans, or more pathogenicity-related genes (PRGs)—including prophages, pathogenicity islands (PAIs), virulence factors (VFs), and horizontal gene transfers (HGTs)—than nonpathogens. Interestingly, in pathogens of the nine genera, the percentages of PS-ORFans are consistently higher than those of SS-ORFans, which is not true in nonpathogens. Similarly, in pathogens of the nine genera, the percentages of PS-ORFans matching the four types of PRGs are also always higher than those of SS-ORFans, but this is not true in nonpathogens. All of these findings suggest the greater importance of PS-ORFans for bacterial pathogenicity. IMPORTANCE Recent pangenome analyses of numerous bacterial species have suggested that each genome of a single species may have a significant fraction of its gene content unique or shared by a very few genomes (i.e., ORFans). We selected nine bacterial genera, each containing at least five pathogenic and five nonpathogenic genomes, to compare their ORFans in relation to pathogenicity-related genes. Pathogens in these genera are known to cause a number of common and devastating human diseases such as pneumonia, diphtheria, melioidosis, and tuberculosis. Thus, they are worthy of in-depth systems microbiology investigations, including the comparative study of ORFans between pathogens and nonpathogens. We provide direct evidence to suggest that ORFans shared by more pathogens are more associated with pathogenicity-related genes and thus are more important targets for development of new diagnostic markers or therapeutic drugs for bacterial infectious diseases. American Society for Microbiology 2019-02-12 /pmc/articles/PMC6372840/ /pubmed/30801025 http://dx.doi.org/10.1128/mSystems.00290-18 Text en Copyright © 2019 Entwistle et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Entwistle, Sarah
Li, Xueqiong
Yin, Yanbin
Orphan Genes Shared by Pathogenic Genomes Are More Associated with Bacterial Pathogenicity
title Orphan Genes Shared by Pathogenic Genomes Are More Associated with Bacterial Pathogenicity
title_full Orphan Genes Shared by Pathogenic Genomes Are More Associated with Bacterial Pathogenicity
title_fullStr Orphan Genes Shared by Pathogenic Genomes Are More Associated with Bacterial Pathogenicity
title_full_unstemmed Orphan Genes Shared by Pathogenic Genomes Are More Associated with Bacterial Pathogenicity
title_short Orphan Genes Shared by Pathogenic Genomes Are More Associated with Bacterial Pathogenicity
title_sort orphan genes shared by pathogenic genomes are more associated with bacterial pathogenicity
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372840/
https://www.ncbi.nlm.nih.gov/pubmed/30801025
http://dx.doi.org/10.1128/mSystems.00290-18
work_keys_str_mv AT entwistlesarah orphangenessharedbypathogenicgenomesaremoreassociatedwithbacterialpathogenicity
AT lixueqiong orphangenessharedbypathogenicgenomesaremoreassociatedwithbacterialpathogenicity
AT yinyanbin orphangenessharedbypathogenicgenomesaremoreassociatedwithbacterialpathogenicity