Cargando…

A fragment activity assay reveals the key residues of TBC1D15 GTPase-activating protein (GAP) in Chiloscyllium plagiosum

BACKGROUND: GTPase-activating proteins (GAPs) with a TBC (Tre-2/Bub2/Cdc16) domain architecture serve as negative regulators of Rab GTPases. The related crystal structure has been studied and reported by other members of our research group in 2017 (Chen et al. in Protein Sci 26(4):834–846, 2017). Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Yangyang, Lin, Guodong, Chen, Yanna, Ge, Yinghua, Liang, Ruofeng, Wu, Jia, Chen, Jianqing, Wang, Dan, Shi, Hengbo, Fei, Hui, Lv, Zhengbing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373008/
https://www.ncbi.nlm.nih.gov/pubmed/30755162
http://dx.doi.org/10.1186/s12867-019-0122-2
Descripción
Sumario:BACKGROUND: GTPase-activating proteins (GAPs) with a TBC (Tre-2/Bub2/Cdc16) domain architecture serve as negative regulators of Rab GTPases. The related crystal structure has been studied and reported by other members of our research group in 2017 (Chen et al. in Protein Sci 26(4):834–846, 2017). The protein crystal structure and sequencing data accession numbers in Protein structure database (PDB) are 5TUB (Shark TBC1D15 GAP) and 5TUC (Sus TBC1D15 GAP), respectively. In this paper, we analyzed the Rab-GAP specificity of TBC1D15 in the evolution and influence of key amino acid residue mutations on Rab-GAP activity. RESULTS: Sequence alignment showed that five arginine residues of the TBC1D15-GAP domain are conserved among the species Sus/Mus/Homo but have been replaced by glycine or lysine in Shark. A fragment activity assay was conducted by altering the five residues of Shark TBC1D15-GAP to arginine, and the corresponding arginine in TBC1D15 GAP domains from Sus and Homo species were mutated to resemble Shark TBC1D15-GAP. Our data revealed that the residues of G28, K45, K119, K122 and K221 in the Shark TBC1D15-GAP domain had a key role in determining the specificity for Rab7 and Rab11. Mutation of the five residues significantly altered the Shark TBC1D15-GAP activity. CONCLUSIONS: These results revealed that the substrate specificity of TBC1D15 has had different mechanisms across the evolution of species from lower-cartilaginous fish to higher mammals. Collectively, the data support a different mechanism of Shark TBC1D15-GAP in substrate selection, which provides a new idea for the development of Marine drugs.