Cargando…
BreCaHAD: a dataset for breast cancer histopathological annotation and diagnosis
OBJECTIVES: Histopathological tissue analysis by a pathologist determines the diagnosis and prognosis of most tumors, such as breast cancer. To estimate the aggressiveness of cancer, a pathologist evaluates the microscopic appearance of a biopsied tissue sample based on morphological features which...
Autores principales: | Aksac, Alper, Demetrick, Douglas J., Ozyer, Tansel, Alhajj, Reda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373078/ https://www.ncbi.nlm.nih.gov/pubmed/30755250 http://dx.doi.org/10.1186/s13104-019-4121-7 |
Ejemplares similares
-
CACTUS: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology
por: Aksac, Alper, et al.
Publicado: (2020) -
Integrating text mining, data mining, and network analysis for identifying genetic breast cancer trends
por: Jurca, Gabriela, et al.
Publicado: (2016) -
Data on cut-edge for spatial clustering based on proximity graphs
por: Aksac, Alper, et al.
Publicado: (2019) -
A Consistency-Based Feature Selection Method Allied with Linear SVMs for HIV-1 Protease Cleavage Site Prediction
por: Öztürk, Orkun, et al.
Publicado: (2013) -
Utilizing maximal frequent itemsets and social network analysis for HIV data analysis
por: Koçak, Yunuscan, et al.
Publicado: (2016)