Cargando…

A real-time, bioluminescent annexin V assay for the assessment of apoptosis

Apoptosis is an important and necessary cell death program which promotes homeostasis and organismal survival. When dysregulated, however, it can lead to a myriad of pathologies from neurodegenerative diseases to cancer. Apoptosis is therefore the subject of intense study aimed at dissecting its pat...

Descripción completa

Detalles Bibliográficos
Autores principales: Kupcho, Kevin, Shultz, John, Hurst, Robin, Hartnett, Jim, Zhou, Wenhui, Machleidt, Thomas, Grailer, Jamison, Worzella, Tracy, Riss, Terry, Lazar, Dan, Cali, James J., Niles, Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373262/
https://www.ncbi.nlm.nih.gov/pubmed/30498998
http://dx.doi.org/10.1007/s10495-018-1502-7
Descripción
Sumario:Apoptosis is an important and necessary cell death program which promotes homeostasis and organismal survival. When dysregulated, however, it can lead to a myriad of pathologies from neurodegenerative diseases to cancer. Apoptosis is therefore the subject of intense study aimed at dissecting its pathways and molecular mechanisms. Although many assay methods exist for confirming whether an apoptotic response has occurred in vitro, most methods are destructive and involve laborious operator effort or specialized instrumentation. Here we describe a real-time, no-wash, microplate method which utilizes recombinant annexin V fusion proteins containing evolved binary subunits of NanoBiT™ luciferase. The fusion proteins, a time-released enzymatic substrate, a necrosis detection dye and exogenous calcium ions are delivered via an optimized and physiologically inert reagent directly to cells in culture at the time of treatment or dosing. Luminescent signals proportional to phosphatidylserine (PS) exposure and fluorescent signals generated as a result of loss of membrane integrity are then collected using a standard multimode plate reader at scheduled intervals over the exposure. The resulting luminescent and fluorescent data are then used to define the kinetics and magnitude of an apoptotic response. This study details our efforts to develop, characterize, and demonstrate the features of the assay by providing relevant examples from diverse cell models for programmed cell death.