Cargando…

Backdoors for Linear Temporal Logic

In the present paper, we introduce the backdoor set approach into the field of temporal logic for the global fragment of linear temporal logic. We study the parameterized complexity of the satisfiability problem parameterized by the size of the backdoor. We distinguish between backdoor detection and...

Descripción completa

Detalles Bibliográficos
Autores principales: Meier, Arne, Ordyniak, Sebastian, Ramanujan, M. S., Schindler, Irena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373296/
https://www.ncbi.nlm.nih.gov/pubmed/30828121
http://dx.doi.org/10.1007/s00453-018-0515-5
_version_ 1783394957399162880
author Meier, Arne
Ordyniak, Sebastian
Ramanujan, M. S.
Schindler, Irena
author_facet Meier, Arne
Ordyniak, Sebastian
Ramanujan, M. S.
Schindler, Irena
author_sort Meier, Arne
collection PubMed
description In the present paper, we introduce the backdoor set approach into the field of temporal logic for the global fragment of linear temporal logic. We study the parameterized complexity of the satisfiability problem parameterized by the size of the backdoor. We distinguish between backdoor detection and evaluation of backdoors into the fragments of Horn and Krom formulas. Here we classify the operator fragments of globally-operators for past/future/always, and the combination of them. Detection is shown to be fixed-parameter tractable whereas the complexity of evaluation behaves differently. We show that for Krom formulas the problem is paraNP-complete. For Horn formulas, the complexity is shown to be either fixed parameter tractable or paraNP-complete depending on the considered operator fragment.
format Online
Article
Text
id pubmed-6373296
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-63732962019-03-01 Backdoors for Linear Temporal Logic Meier, Arne Ordyniak, Sebastian Ramanujan, M. S. Schindler, Irena Algorithmica Article In the present paper, we introduce the backdoor set approach into the field of temporal logic for the global fragment of linear temporal logic. We study the parameterized complexity of the satisfiability problem parameterized by the size of the backdoor. We distinguish between backdoor detection and evaluation of backdoors into the fragments of Horn and Krom formulas. Here we classify the operator fragments of globally-operators for past/future/always, and the combination of them. Detection is shown to be fixed-parameter tractable whereas the complexity of evaluation behaves differently. We show that for Krom formulas the problem is paraNP-complete. For Horn formulas, the complexity is shown to be either fixed parameter tractable or paraNP-complete depending on the considered operator fragment. Springer US 2018-09-18 2019 /pmc/articles/PMC6373296/ /pubmed/30828121 http://dx.doi.org/10.1007/s00453-018-0515-5 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Meier, Arne
Ordyniak, Sebastian
Ramanujan, M. S.
Schindler, Irena
Backdoors for Linear Temporal Logic
title Backdoors for Linear Temporal Logic
title_full Backdoors for Linear Temporal Logic
title_fullStr Backdoors for Linear Temporal Logic
title_full_unstemmed Backdoors for Linear Temporal Logic
title_short Backdoors for Linear Temporal Logic
title_sort backdoors for linear temporal logic
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373296/
https://www.ncbi.nlm.nih.gov/pubmed/30828121
http://dx.doi.org/10.1007/s00453-018-0515-5
work_keys_str_mv AT meierarne backdoorsforlineartemporallogic
AT ordyniaksebastian backdoorsforlineartemporallogic
AT ramanujanms backdoorsforlineartemporallogic
AT schindlerirena backdoorsforlineartemporallogic