Cargando…
Mutation and Selection in Bacteria: Modelling and Calibration
Temporal evolution of a clonal bacterial population is modelled taking into account reversible mutation and selection mechanisms. For the mutation model, an efficient algorithm is proposed to verify whether experimental data can be explained by this model. The selection–mutation model has unobservab...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373360/ https://www.ncbi.nlm.nih.gov/pubmed/30430330 http://dx.doi.org/10.1007/s11538-018-0529-9 |
Sumario: | Temporal evolution of a clonal bacterial population is modelled taking into account reversible mutation and selection mechanisms. For the mutation model, an efficient algorithm is proposed to verify whether experimental data can be explained by this model. The selection–mutation model has unobservable fitness parameters, and, to estimate them, we use an Approximate Bayesian Computation algorithm. The algorithms are illustrated using in vitro data for phase variable genes of Campylobacter jejuni. |
---|