Cargando…

Mutation and Selection in Bacteria: Modelling and Calibration

Temporal evolution of a clonal bacterial population is modelled taking into account reversible mutation and selection mechanisms. For the mutation model, an efficient algorithm is proposed to verify whether experimental data can be explained by this model. The selection–mutation model has unobservab...

Descripción completa

Detalles Bibliográficos
Autores principales: Bayliss, C. D., Fallaize, C., Howitt, R., Tretyakov, M. V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373360/
https://www.ncbi.nlm.nih.gov/pubmed/30430330
http://dx.doi.org/10.1007/s11538-018-0529-9
_version_ 1783394973992878080
author Bayliss, C. D.
Fallaize, C.
Howitt, R.
Tretyakov, M. V.
author_facet Bayliss, C. D.
Fallaize, C.
Howitt, R.
Tretyakov, M. V.
author_sort Bayliss, C. D.
collection PubMed
description Temporal evolution of a clonal bacterial population is modelled taking into account reversible mutation and selection mechanisms. For the mutation model, an efficient algorithm is proposed to verify whether experimental data can be explained by this model. The selection–mutation model has unobservable fitness parameters, and, to estimate them, we use an Approximate Bayesian Computation algorithm. The algorithms are illustrated using in vitro data for phase variable genes of Campylobacter jejuni.
format Online
Article
Text
id pubmed-6373360
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-63733602019-03-01 Mutation and Selection in Bacteria: Modelling and Calibration Bayliss, C. D. Fallaize, C. Howitt, R. Tretyakov, M. V. Bull Math Biol Article Temporal evolution of a clonal bacterial population is modelled taking into account reversible mutation and selection mechanisms. For the mutation model, an efficient algorithm is proposed to verify whether experimental data can be explained by this model. The selection–mutation model has unobservable fitness parameters, and, to estimate them, we use an Approximate Bayesian Computation algorithm. The algorithms are illustrated using in vitro data for phase variable genes of Campylobacter jejuni. Springer US 2018-11-14 2019 /pmc/articles/PMC6373360/ /pubmed/30430330 http://dx.doi.org/10.1007/s11538-018-0529-9 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Bayliss, C. D.
Fallaize, C.
Howitt, R.
Tretyakov, M. V.
Mutation and Selection in Bacteria: Modelling and Calibration
title Mutation and Selection in Bacteria: Modelling and Calibration
title_full Mutation and Selection in Bacteria: Modelling and Calibration
title_fullStr Mutation and Selection in Bacteria: Modelling and Calibration
title_full_unstemmed Mutation and Selection in Bacteria: Modelling and Calibration
title_short Mutation and Selection in Bacteria: Modelling and Calibration
title_sort mutation and selection in bacteria: modelling and calibration
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373360/
https://www.ncbi.nlm.nih.gov/pubmed/30430330
http://dx.doi.org/10.1007/s11538-018-0529-9
work_keys_str_mv AT baylisscd mutationandselectioninbacteriamodellingandcalibration
AT fallaizec mutationandselectioninbacteriamodellingandcalibration
AT howittr mutationandselectioninbacteriamodellingandcalibration
AT tretyakovmv mutationandselectioninbacteriamodellingandcalibration