Cargando…
Protein–ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3
We report the performance of HADDOCK in the 2018 iteration of the Grand Challenge organised by the D3R consortium. Building on the findings of our participation in last year’s challenge, we significantly improved our pose prediction protocol which resulted in a mean RMSD for the top scoring pose of...
Autores principales: | Koukos, Panagiotis I., Xue, Li C., Bonvin, Alexandre M. J. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373529/ https://www.ncbi.nlm.nih.gov/pubmed/30128928 http://dx.doi.org/10.1007/s10822-018-0148-4 |
Ejemplares similares
-
Performance of HADDOCK and a simple contact-based protein–ligand binding affinity predictor in the D3R Grand Challenge 2
por: Kurkcuoglu, Zeynep, et al.
Publicado: (2017) -
Binding affinities of the farnesoid X receptor in the D3R Grand Challenge 2 estimated by free-energy perturbation and docking
por: Olsson, Martin A., et al.
Publicado: (2017) -
Shape-Restrained Modeling of Protein–Small-Molecule
Complexes with High Ambiguity Driven DOCKing
por: Koukos, Panagiotis I., et al.
Publicado: (2021) -
Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations
por: Misini Ignjatović, Majda, et al.
Publicado: (2016) -
Quantitative surface field analysis: learning causal models to predict ligand binding affinity and pose
por: Cleves, Ann E., et al.
Publicado: (2018)