Cargando…
On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning
Model validation is the most important part of building a supervised model. For building a model with good generalization performance one must have a sensible data splitting strategy, and this is crucial for model validation. In this study, we conducted a comparative study on various reported data s...
Autores principales: | Xu, Yun, Goodacre, Royston |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373628/ https://www.ncbi.nlm.nih.gov/pubmed/30842888 http://dx.doi.org/10.1007/s41664-018-0068-2 |
Ejemplares similares
-
Bootstrapping the out-of-sample predictions for efficient and accurate cross-validation
por: Tsamardinos, Ioannis, et al.
Publicado: (2018) -
Minimum Divergence Estimators, Maximum Likelihood and the Generalized Bootstrap
por: Broniatowski, Michel
Publicado: (2021) -
A combined approach of generalized additive model and bootstrap with small sample sets for fault diagnosis in fermentation process of glutamate
por: Liu, Chunbo, et al.
Publicado: (2016) -
Validating Sequence Analysis Typologies Using Parametric Bootstrap
por: Studer, Matthias
Publicado: (2021) -
Bootstrapping semi-supervised annotation method for potential suicidal messages
por: Acuña Caicedo, Roberto Wellington, et al.
Publicado: (2022)