Cargando…
An attention based deep learning model of clinical events in the intensive care unit
This study trained long short-term memory (LSTM) recurrent neural networks (RNNs) incorporating an attention mechanism to predict daily sepsis, myocardial infarction (MI), and vancomycin antibiotic administration over two week patient ICU courses in the MIMIC-III dataset. These models achieved next-...
Autores principales: | Kaji, Deepak A., Zech, John R., Kim, Jun S., Cho, Samuel K., Dangayach, Neha S., Costa, Anthony B., Oermann, Eric K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373907/ https://www.ncbi.nlm.nih.gov/pubmed/30759094 http://dx.doi.org/10.1371/journal.pone.0211057 |
Ejemplares similares
-
Predicting adult neuroscience intensive care unit admission from emergency department triage using a retrospective, tabular-free text machine learning approach
por: Klang, Eyal, et al.
Publicado: (2021) -
Predicting Surgical Complications in Adult Patients Undergoing Anterior Cervical Discectomy and Fusion Using Machine Learning
por: Arvind, Varun, et al.
Publicado: (2018) -
Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study
por: Zech, John R., et al.
Publicado: (2018) -
Letter to the Editor: Changes in Neurosurgery Resident Education During the COVID-19 Pandemic: An Institutional Experience from a Global Epicenter
por: Kessler, Remi A., et al.
Publicado: (2020) -
Deep Learning and Neurology: A Systematic Review
por: Valliani, Aly Al-Amyn, et al.
Publicado: (2019)