Cargando…

A widespread internal resonance phenomenon in functionally graded material plates with longitudinal speed

A widespread internal resonance phenomenon is detected in axially moving functionally graded material (FGM) rectangular plates. The geometrical nonlinearity is taken into account with the consideration of von Kármán nonlinear geometric equations. Using d’Alembert’s principle, governing equation of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Y. F., Liu, J. T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374398/
https://www.ncbi.nlm.nih.gov/pubmed/30760768
http://dx.doi.org/10.1038/s41598-018-37921-9
Descripción
Sumario:A widespread internal resonance phenomenon is detected in axially moving functionally graded material (FGM) rectangular plates. The geometrical nonlinearity is taken into account with the consideration of von Kármán nonlinear geometric equations. Using d’Alembert’s principle, governing equation of the transverse motion is derived. The obtained equation is further discretized to ordinary differential equations using the Galerkin technique. The harmonic balance method is adopted to solve the above equations. Additionally, stability analysis of steady-state solutions is presented. Research shows that a one-to-one internal resonance phenomenon widely exists in a large range of constituent volume distribution in moving FGM plates. Moreover, it is found that this internal resonance phenomenon can easily happen even though the FGM plates are under extremely small external excitation or with very large damping.