Cargando…
Neuronal message passing using Mean-field, Bethe, and Marginal approximations
Neuronal computations rely upon local interactions across synapses. For a neuronal network to perform inference, it must integrate information from locally computed messages that are propagated among elements of that network. We review the form of two popular (Bayesian) message passing schemes and c...
Autores principales: | Parr, Thomas, Markovic, Dimitrije, Kiebel, Stefan J., Friston, Karl J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374414/ https://www.ncbi.nlm.nih.gov/pubmed/30760782 http://dx.doi.org/10.1038/s41598-018-38246-3 |
Ejemplares similares
-
Superconductivity: a new approach based on the Bethe-Salpeter equation in the mean-field approximation
por: Malik, G P
Publicado: (2016) -
Predicting change: Approximate inference under explicit representation of temporal structure in changing environments
por: Marković, Dimitrije, et al.
Publicado: (2019) -
Message Passing and Metabolism
por: Parr, Thomas
Publicado: (2021) -
Neuronal Sequence Models for Bayesian Online Inference
por: Frölich, Sascha, et al.
Publicado: (2021) -
Modules or Mean-Fields?
por: Parr, Thomas, et al.
Publicado: (2020)