Cargando…
Evaluation of an improved tool for non-invasive prediction of neonatal respiratory morbidity based on fully automated fetal lung ultrasound analysis
The objective of this study was to evaluate the performance of a new version of quantusFLM®, a software tool for prediction of neonatal respiratory morbidity (NRM) by ultrasound, which incorporates a fully automated fetal lung delineation based on Deep Learning techniques. A set of 790 fetal lung ul...
Autores principales: | Burgos-Artizzu, Xavier P., Perez-Moreno, Álvaro, Coronado-Gutierrez, David, Gratacos, Eduard, Palacio, Montse |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374419/ https://www.ncbi.nlm.nih.gov/pubmed/30760806 http://dx.doi.org/10.1038/s41598-019-38576-w |
Ejemplares similares
-
Prediction of Neonatal Respiratory Morbidity Assessed by Quantitative Ultrasound Lung Texture Analysis in Twin Pregnancies
por: Moreno-Espinosa, Ana L., et al.
Publicado: (2022) -
Concordance of the risk of neonatal respiratory morbidity assessed by quantitative ultrasound lung texture analysis in fetuses of twin pregnancies
por: Moreno-Espinosa, Ana L., et al.
Publicado: (2022) -
Mid-trimester prediction of spontaneous preterm birth with automated cervical quantitative ultrasound texture analysis and cervical length: a prospective study
por: Burgos-Artizzu, Xavier P., et al.
Publicado: (2021) -
Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
por: Burgos-Artizzu, Xavier P., et al.
Publicado: (2020) -
Author Correction: Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
por: Burgos-Artizzu, Xavier P., et al.
Publicado: (2022)