Cargando…
Predicting Alzheimer’s disease progression using multi-modal deep learning approach
Alzheimer’s disease (AD) is a progressive neurodegenerative condition marked by a decline in cognitive functions with no validated disease modifying treatment. It is critical for timely treatment to detect AD in its earlier stage before clinical manifestation. Mild cognitive impairment (MCI) is an i...
Autores principales: | Lee, Garam, Nho, Kwangsik, Kang, Byungkon, Sohn, Kyung-Ah, Kim, Dokyoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374429/ https://www.ncbi.nlm.nih.gov/pubmed/30760848 http://dx.doi.org/10.1038/s41598-018-37769-z |
Ejemplares similares
-
Author Correction: Predicting Alzheimer’s disease progression using multi-modal deep learning approach
por: Lee, Garam, et al.
Publicado: (2023) -
MildInt: Deep Learning-Based Multimodal Longitudinal Data Integration Framework
por: Lee, Garam, et al.
Publicado: (2019) -
Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data
por: Jo, Taeho, et al.
Publicado: (2019) -
An interpretable Alzheimer’s disease oligogenic risk score informed by neuroimaging biomarkers improves risk prediction and stratification
por: Suh, Erica H., et al.
Publicado: (2023) -
Deep learning detection of informative features in tau PET for Alzheimer’s disease classification
por: Jo, Taeho, et al.
Publicado: (2020)