Cargando…
Artificial neural networks for density-functional optimizations in fermionic systems
In this work we propose an artificial neural network functional to the ground-state energy of fermionic interacting particles in homogeneous chains described by the Hubbard model. Our neural network functional was proven to have an excellent performance: it deviates from numerically exact calculatio...
Autores principales: | Custódio, Caio A., Filletti, Érica R., França, Vivian V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374439/ https://www.ncbi.nlm.nih.gov/pubmed/30760812 http://dx.doi.org/10.1038/s41598-018-37999-1 |
Ejemplares similares
-
Fermionic wave functions from neural-network constrained hidden states
por: Robledo Moreno, Javier, et al.
Publicado: (2022) -
Fermionic neural-network states for ab-initio electronic structure
por: Choo, Kenny, et al.
Publicado: (2020) -
Fermionic Statistics in the Strongly Correlated Limit
of Density Functional Theory
por: Grossi, Juri, et al.
Publicado: (2017) -
Temperature in Fermion Systems and the Chiral Fermion Determinant
por: Ichinose, S
Publicado: (2000) -
Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks
por: Zhao, Entong, et al.
Publicado: (2021)