Cargando…

Solitonic State in Microscopic Dynamic Failures

Onset of permanent deformation in crystalline materials under a sharp indenter tip is accompanied by nucleation and propagation of defects. By measuring the spatio-temporal strain field near the indenter tip during indentation tests, we demonstrate that the dynamic strain history at the moment of a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghaffari, H. O., Griffith, W. A., Pec, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374453/
https://www.ncbi.nlm.nih.gov/pubmed/30760765
http://dx.doi.org/10.1038/s41598-018-38037-w
Descripción
Sumario:Onset of permanent deformation in crystalline materials under a sharp indenter tip is accompanied by nucleation and propagation of defects. By measuring the spatio-temporal strain field near the indenter tip during indentation tests, we demonstrate that the dynamic strain history at the moment of a displacement burst carries characteristics of the formation and interaction of local excitations, or solitons. We show that dynamic propagation of multiple solitons is followed by a short time interval where the propagating fronts can accelerate suddenly. As a result of such abrupt local accelerations, duration of the fast-slip phase of a failure event is shortened. Our results show that formation and annihilation of solitons mediate the microscopic fast weakening phase, during which extreme acceleration and collision of solitons lead to non-Newtonian behavior and Lorentz contraction, i.e., shortening of solitons’ characteristic length. The results open new horizons for understanding dynamic material response during failure and, more generally, complexity of earthquake sources.