Cargando…

VraSR and Virulence Trait Modulation during Daptomycin Resistance in Methicillin-Resistant Staphylococcus aureus Infection

Methicillin-resistant Staphylococcus aureus (MRSA) threatens human health in hospital and community settings. The lipopeptide antibiotic daptomycin (DAP) is a frequently used treatment option for MRSA infection. DAP exposure can cause bacterial resistance because mutations are induced in genes impli...

Descripción completa

Detalles Bibliográficos
Autores principales: Taglialegna, Agustina, Varela, Maria C., Rosato, Roberto R., Rosato, Adriana E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374592/
https://www.ncbi.nlm.nih.gov/pubmed/30760612
http://dx.doi.org/10.1128/mSphere.00557-18
_version_ 1783395191025041408
author Taglialegna, Agustina
Varela, Maria C.
Rosato, Roberto R.
Rosato, Adriana E.
author_facet Taglialegna, Agustina
Varela, Maria C.
Rosato, Roberto R.
Rosato, Adriana E.
author_sort Taglialegna, Agustina
collection PubMed
description Methicillin-resistant Staphylococcus aureus (MRSA) threatens human health in hospital and community settings. The lipopeptide antibiotic daptomycin (DAP) is a frequently used treatment option for MRSA infection. DAP exposure can cause bacterial resistance because mutations are induced in genes implicated in cell membrane and cell wall metabolism. Adaptations aimed at surviving antimicrobial pressure can affect bacterial physiology and modify in vivo aptitude and pathogenesis. In this study, clinical DAP-susceptible (DAP(s)) and DAP-resistant (DAP(r)) MRSA isolates were used to investigate associations between DAP resistance and staphylococcal virulence. We previously found that VraSR is a critical sensor of cell membrane/wall homeostasis associated with DAP acquisition during MRSA infection. The present study found that DAP(r) CB1634 and CB5014 MRSA strains with vraSR upregulation were less virulent than their susceptible counterparts, CB1631 and CB5013. Differential gene-transcription profile analysis revealed that DAP(r) CB1634 had decreased agr two-component system expression, virulence factors, and highly suppressed hemolysis activity. Functional genetic analysis performed in DAP(r) CB1634 strains using vraSR inactivation followed by gene complementation found that vraSR acted as a transcriptional agrA regulator. These results indicated that VraSR has a broad range of regulatory functions. VraSR also appeared to affect DAP(r) adherence to epithelial cells, which would affect DAP(r) strain colonization and survival in the host. The correlation between DAP resistance and decreased virulence was also found in the CB5013 (DAP(s)) and CB5014 (DAP(r)) pair. Taken together, these findings are the first evidence that DAP resistance and MRSA virulence are tightly connected and involve compromised expression of regulatory and virulence determinants. IMPORTANCE Methicillin-resistant S. aureus continues to develop resistance to antimicrobials, including those in current clinical use as daptomycin (DAP). Resistance to DAP arises by mutations in cell membrane and cell wall genes and/or upregulation of the two-component VraSR system. However, less is known about the connection between the pathogen and virulence traits during DAP resistance development. We provide new insights into VraSR and its regulatory role for virulence factors during DAP resistance, highlighting coordinated interactions that favor the higher persistence of MRSA DAP-resistant strains in the infected host.
format Online
Article
Text
id pubmed-6374592
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-63745922019-02-22 VraSR and Virulence Trait Modulation during Daptomycin Resistance in Methicillin-Resistant Staphylococcus aureus Infection Taglialegna, Agustina Varela, Maria C. Rosato, Roberto R. Rosato, Adriana E. mSphere Research Article Methicillin-resistant Staphylococcus aureus (MRSA) threatens human health in hospital and community settings. The lipopeptide antibiotic daptomycin (DAP) is a frequently used treatment option for MRSA infection. DAP exposure can cause bacterial resistance because mutations are induced in genes implicated in cell membrane and cell wall metabolism. Adaptations aimed at surviving antimicrobial pressure can affect bacterial physiology and modify in vivo aptitude and pathogenesis. In this study, clinical DAP-susceptible (DAP(s)) and DAP-resistant (DAP(r)) MRSA isolates were used to investigate associations between DAP resistance and staphylococcal virulence. We previously found that VraSR is a critical sensor of cell membrane/wall homeostasis associated with DAP acquisition during MRSA infection. The present study found that DAP(r) CB1634 and CB5014 MRSA strains with vraSR upregulation were less virulent than their susceptible counterparts, CB1631 and CB5013. Differential gene-transcription profile analysis revealed that DAP(r) CB1634 had decreased agr two-component system expression, virulence factors, and highly suppressed hemolysis activity. Functional genetic analysis performed in DAP(r) CB1634 strains using vraSR inactivation followed by gene complementation found that vraSR acted as a transcriptional agrA regulator. These results indicated that VraSR has a broad range of regulatory functions. VraSR also appeared to affect DAP(r) adherence to epithelial cells, which would affect DAP(r) strain colonization and survival in the host. The correlation between DAP resistance and decreased virulence was also found in the CB5013 (DAP(s)) and CB5014 (DAP(r)) pair. Taken together, these findings are the first evidence that DAP resistance and MRSA virulence are tightly connected and involve compromised expression of regulatory and virulence determinants. IMPORTANCE Methicillin-resistant S. aureus continues to develop resistance to antimicrobials, including those in current clinical use as daptomycin (DAP). Resistance to DAP arises by mutations in cell membrane and cell wall genes and/or upregulation of the two-component VraSR system. However, less is known about the connection between the pathogen and virulence traits during DAP resistance development. We provide new insights into VraSR and its regulatory role for virulence factors during DAP resistance, highlighting coordinated interactions that favor the higher persistence of MRSA DAP-resistant strains in the infected host. American Society for Microbiology 2019-02-13 /pmc/articles/PMC6374592/ /pubmed/30760612 http://dx.doi.org/10.1128/mSphere.00557-18 Text en Copyright © 2019 Taglialegna et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Taglialegna, Agustina
Varela, Maria C.
Rosato, Roberto R.
Rosato, Adriana E.
VraSR and Virulence Trait Modulation during Daptomycin Resistance in Methicillin-Resistant Staphylococcus aureus Infection
title VraSR and Virulence Trait Modulation during Daptomycin Resistance in Methicillin-Resistant Staphylococcus aureus Infection
title_full VraSR and Virulence Trait Modulation during Daptomycin Resistance in Methicillin-Resistant Staphylococcus aureus Infection
title_fullStr VraSR and Virulence Trait Modulation during Daptomycin Resistance in Methicillin-Resistant Staphylococcus aureus Infection
title_full_unstemmed VraSR and Virulence Trait Modulation during Daptomycin Resistance in Methicillin-Resistant Staphylococcus aureus Infection
title_short VraSR and Virulence Trait Modulation during Daptomycin Resistance in Methicillin-Resistant Staphylococcus aureus Infection
title_sort vrasr and virulence trait modulation during daptomycin resistance in methicillin-resistant staphylococcus aureus infection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374592/
https://www.ncbi.nlm.nih.gov/pubmed/30760612
http://dx.doi.org/10.1128/mSphere.00557-18
work_keys_str_mv AT taglialegnaagustina vrasrandvirulencetraitmodulationduringdaptomycinresistanceinmethicillinresistantstaphylococcusaureusinfection
AT varelamariac vrasrandvirulencetraitmodulationduringdaptomycinresistanceinmethicillinresistantstaphylococcusaureusinfection
AT rosatorobertor vrasrandvirulencetraitmodulationduringdaptomycinresistanceinmethicillinresistantstaphylococcusaureusinfection
AT rosatoadrianae vrasrandvirulencetraitmodulationduringdaptomycinresistanceinmethicillinresistantstaphylococcusaureusinfection