Cargando…

Radiogenomic Analysis of F-18-Fluorodeoxyglucose Positron Emission Tomography and Gene Expression Data Elucidates the Epidemiological Complexity of Colorectal Cancer Landscape

PURPOSE: Transcriptomic profiling has enabled the neater genomic characterization of several cancers, among them colorectal cancer (CRC), through the derivation of genes with enhanced causal role and informative gene sets. However, the identification of small-sized gene signatures, which can serve a...

Descripción completa

Detalles Bibliográficos
Autores principales: Vlachavas, Efstathios–Iason, Pilalis, Eleftherios, Papadodima, Olga, Koczan, Dirk, Willis, Stefan, Klippel, Sven, Cheng, Caixia, Pan, Leyun, Sachpekidis, Christos, Pintzas, Alexandros, Gregoriou, Vasilis, Dimitrakopoulou-Strauss, Antonia, Chatziioannou, Aristotelis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374701/
https://www.ncbi.nlm.nih.gov/pubmed/30809322
http://dx.doi.org/10.1016/j.csbj.2019.01.007
_version_ 1783395221061500928
author Vlachavas, Efstathios–Iason
Pilalis, Eleftherios
Papadodima, Olga
Koczan, Dirk
Willis, Stefan
Klippel, Sven
Cheng, Caixia
Pan, Leyun
Sachpekidis, Christos
Pintzas, Alexandros
Gregoriou, Vasilis
Dimitrakopoulou-Strauss, Antonia
Chatziioannou, Aristotelis
author_facet Vlachavas, Efstathios–Iason
Pilalis, Eleftherios
Papadodima, Olga
Koczan, Dirk
Willis, Stefan
Klippel, Sven
Cheng, Caixia
Pan, Leyun
Sachpekidis, Christos
Pintzas, Alexandros
Gregoriou, Vasilis
Dimitrakopoulou-Strauss, Antonia
Chatziioannou, Aristotelis
author_sort Vlachavas, Efstathios–Iason
collection PubMed
description PURPOSE: Transcriptomic profiling has enabled the neater genomic characterization of several cancers, among them colorectal cancer (CRC), through the derivation of genes with enhanced causal role and informative gene sets. However, the identification of small-sized gene signatures, which can serve as potential biomarkers in CRC, remains challenging, mainly due to the great genetic heterogeneity of the disease. METHODS: We developed and exploited an analytical framework for the integrative analysis of CRC datasets, encompassing transcriptomic data and positron emission tomography (PET) measurements. Profiling data comprised two microarray datasets, pertaining biopsy specimen from 30 untreated patients with primary CRC, coupled by their F-18-Fluorodeoxyglucose (FDG) PET values, using tracer kinetic analysis measurements. The computational framework incorporates algorithms for semantic processing, multivariate analysis, data mining and dimensionality reduction. RESULTS: Transcriptomic and PET data feature sets, were evaluated for their discrimination performance between primary colorectal adenocarcinomas and adjacent normal mucosa. A composite signature was derived, pertaining 12 features: 7 genes and 5 PET variables. This compact signature manifests superior performance in classification accuracy, through the integration of gene expression and PET data. CONCLUSIONS: This work represents an effort for the integrative, multilayered, signature-oriented analysis of CRC, in the context of radio-genomics, inferring a composite signature with promising results for patient stratification.
format Online
Article
Text
id pubmed-6374701
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Research Network of Computational and Structural Biotechnology
record_format MEDLINE/PubMed
spelling pubmed-63747012019-02-26 Radiogenomic Analysis of F-18-Fluorodeoxyglucose Positron Emission Tomography and Gene Expression Data Elucidates the Epidemiological Complexity of Colorectal Cancer Landscape Vlachavas, Efstathios–Iason Pilalis, Eleftherios Papadodima, Olga Koczan, Dirk Willis, Stefan Klippel, Sven Cheng, Caixia Pan, Leyun Sachpekidis, Christos Pintzas, Alexandros Gregoriou, Vasilis Dimitrakopoulou-Strauss, Antonia Chatziioannou, Aristotelis Comput Struct Biotechnol J Research Article PURPOSE: Transcriptomic profiling has enabled the neater genomic characterization of several cancers, among them colorectal cancer (CRC), through the derivation of genes with enhanced causal role and informative gene sets. However, the identification of small-sized gene signatures, which can serve as potential biomarkers in CRC, remains challenging, mainly due to the great genetic heterogeneity of the disease. METHODS: We developed and exploited an analytical framework for the integrative analysis of CRC datasets, encompassing transcriptomic data and positron emission tomography (PET) measurements. Profiling data comprised two microarray datasets, pertaining biopsy specimen from 30 untreated patients with primary CRC, coupled by their F-18-Fluorodeoxyglucose (FDG) PET values, using tracer kinetic analysis measurements. The computational framework incorporates algorithms for semantic processing, multivariate analysis, data mining and dimensionality reduction. RESULTS: Transcriptomic and PET data feature sets, were evaluated for their discrimination performance between primary colorectal adenocarcinomas and adjacent normal mucosa. A composite signature was derived, pertaining 12 features: 7 genes and 5 PET variables. This compact signature manifests superior performance in classification accuracy, through the integration of gene expression and PET data. CONCLUSIONS: This work represents an effort for the integrative, multilayered, signature-oriented analysis of CRC, in the context of radio-genomics, inferring a composite signature with promising results for patient stratification. Research Network of Computational and Structural Biotechnology 2019-01-25 /pmc/articles/PMC6374701/ /pubmed/30809322 http://dx.doi.org/10.1016/j.csbj.2019.01.007 Text en © 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Vlachavas, Efstathios–Iason
Pilalis, Eleftherios
Papadodima, Olga
Koczan, Dirk
Willis, Stefan
Klippel, Sven
Cheng, Caixia
Pan, Leyun
Sachpekidis, Christos
Pintzas, Alexandros
Gregoriou, Vasilis
Dimitrakopoulou-Strauss, Antonia
Chatziioannou, Aristotelis
Radiogenomic Analysis of F-18-Fluorodeoxyglucose Positron Emission Tomography and Gene Expression Data Elucidates the Epidemiological Complexity of Colorectal Cancer Landscape
title Radiogenomic Analysis of F-18-Fluorodeoxyglucose Positron Emission Tomography and Gene Expression Data Elucidates the Epidemiological Complexity of Colorectal Cancer Landscape
title_full Radiogenomic Analysis of F-18-Fluorodeoxyglucose Positron Emission Tomography and Gene Expression Data Elucidates the Epidemiological Complexity of Colorectal Cancer Landscape
title_fullStr Radiogenomic Analysis of F-18-Fluorodeoxyglucose Positron Emission Tomography and Gene Expression Data Elucidates the Epidemiological Complexity of Colorectal Cancer Landscape
title_full_unstemmed Radiogenomic Analysis of F-18-Fluorodeoxyglucose Positron Emission Tomography and Gene Expression Data Elucidates the Epidemiological Complexity of Colorectal Cancer Landscape
title_short Radiogenomic Analysis of F-18-Fluorodeoxyglucose Positron Emission Tomography and Gene Expression Data Elucidates the Epidemiological Complexity of Colorectal Cancer Landscape
title_sort radiogenomic analysis of f-18-fluorodeoxyglucose positron emission tomography and gene expression data elucidates the epidemiological complexity of colorectal cancer landscape
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374701/
https://www.ncbi.nlm.nih.gov/pubmed/30809322
http://dx.doi.org/10.1016/j.csbj.2019.01.007
work_keys_str_mv AT vlachavasefstathiosiason radiogenomicanalysisoff18fluorodeoxyglucosepositronemissiontomographyandgeneexpressiondataelucidatestheepidemiologicalcomplexityofcolorectalcancerlandscape
AT pilaliseleftherios radiogenomicanalysisoff18fluorodeoxyglucosepositronemissiontomographyandgeneexpressiondataelucidatestheepidemiologicalcomplexityofcolorectalcancerlandscape
AT papadodimaolga radiogenomicanalysisoff18fluorodeoxyglucosepositronemissiontomographyandgeneexpressiondataelucidatestheepidemiologicalcomplexityofcolorectalcancerlandscape
AT koczandirk radiogenomicanalysisoff18fluorodeoxyglucosepositronemissiontomographyandgeneexpressiondataelucidatestheepidemiologicalcomplexityofcolorectalcancerlandscape
AT willisstefan radiogenomicanalysisoff18fluorodeoxyglucosepositronemissiontomographyandgeneexpressiondataelucidatestheepidemiologicalcomplexityofcolorectalcancerlandscape
AT klippelsven radiogenomicanalysisoff18fluorodeoxyglucosepositronemissiontomographyandgeneexpressiondataelucidatestheepidemiologicalcomplexityofcolorectalcancerlandscape
AT chengcaixia radiogenomicanalysisoff18fluorodeoxyglucosepositronemissiontomographyandgeneexpressiondataelucidatestheepidemiologicalcomplexityofcolorectalcancerlandscape
AT panleyun radiogenomicanalysisoff18fluorodeoxyglucosepositronemissiontomographyandgeneexpressiondataelucidatestheepidemiologicalcomplexityofcolorectalcancerlandscape
AT sachpekidischristos radiogenomicanalysisoff18fluorodeoxyglucosepositronemissiontomographyandgeneexpressiondataelucidatestheepidemiologicalcomplexityofcolorectalcancerlandscape
AT pintzasalexandros radiogenomicanalysisoff18fluorodeoxyglucosepositronemissiontomographyandgeneexpressiondataelucidatestheepidemiologicalcomplexityofcolorectalcancerlandscape
AT gregoriouvasilis radiogenomicanalysisoff18fluorodeoxyglucosepositronemissiontomographyandgeneexpressiondataelucidatestheepidemiologicalcomplexityofcolorectalcancerlandscape
AT dimitrakopouloustraussantonia radiogenomicanalysisoff18fluorodeoxyglucosepositronemissiontomographyandgeneexpressiondataelucidatestheepidemiologicalcomplexityofcolorectalcancerlandscape
AT chatziioannouaristotelis radiogenomicanalysisoff18fluorodeoxyglucosepositronemissiontomographyandgeneexpressiondataelucidatestheepidemiologicalcomplexityofcolorectalcancerlandscape