Cargando…
Automated Segmentation of Colorectal Tumor in 3D MRI Using 3D Multiscale Densely Connected Convolutional Neural Network
The main goal of this work is to automatically segment colorectal tumors in 3D T2-weighted (T2w) MRI with reasonable accuracy. For such a purpose, a novel deep learning-based algorithm suited for volumetric colorectal tumor segmentation is proposed. The proposed CNN architecture, based on densely co...
Autores principales: | Soomro, Mumtaz Hussain, Coppotelli, Matteo, Conforto, Silvia, Schmid, Maurizio, Giunta, Gaetano, Del Secco, Lorenzo, Neri, Emanuele, Caruso, Damiano, Rengo, Marco, Laghi, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374810/ https://www.ncbi.nlm.nih.gov/pubmed/30838121 http://dx.doi.org/10.1155/2019/1075434 |
Ejemplares similares
-
Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation
por: Hai, Jinjin, et al.
Publicado: (2019) -
The multiscale 3D convolutional network for emotion recognition based on electroencephalogram
por: Su, Yun, et al.
Publicado: (2022) -
Comparison of Initialization Techniques for the Accurate Extraction of Muscle Synergies from Myoelectric Signals via Nonnegative Matrix Factorization
por: Soomro, Mumtaz Hussain, et al.
Publicado: (2018) -
EOS-3D-DCNN: Ebola optimization search-based 3D-dense convolutional neural network for corn leaf disease prediction
por: Ashwini, C., et al.
Publicado: (2023) -
A Densely Connected Multi-Branch 3D Convolutional Neural Network for Motor Imagery EEG Decoding
por: Liu, Tianjun, et al.
Publicado: (2021)