Cargando…
Predicting Long-Term Mortality after Acute Coronary Syndrome Using Machine Learning Techniques and Hematological Markers
INTRODUCTION: Hematological indices including red cell distribution width and neutrophil to lymphocyte ratio are proven to be associated with outcomes of acute coronary syndrome. The usefulness of machine learning techniques in predicting mortality after acute coronary syndrome based on such feature...
Autores principales: | Pieszko, Konrad, Hiczkiewicz, Jarosław, Budzianowski, Paweł, Budzianowski, Jan, Rzeźniczak, Janusz, Pieszko, Karolina, Burchardt, Paweł |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374871/ https://www.ncbi.nlm.nih.gov/pubmed/30838085 http://dx.doi.org/10.1155/2019/9056402 |
Ejemplares similares
-
Machine-learned models using hematological inflammation markers in the prediction of short-term acute coronary syndrome outcomes
por: Pieszko, Konrad, et al.
Publicado: (2018) -
The Role of Hematological Indices in Patients with Acute Coronary Syndrome
por: Budzianowski, Jan, et al.
Publicado: (2017) -
Predictors of atrial fibrillation early recurrence following cryoballoon ablation of pulmonary veins using statistical assessment and machine learning algorithms
por: Budzianowski, Jan, et al.
Publicado: (2018) -
Clinical applications of artificial intelligence in cardiology on the verge of the decade
por: Pieszko, Konrad, et al.
Publicado: (2021) -
The risk for subsequent coronary interventions in a local Polish population
por: Hiczkiewicz, Jaroslaw, et al.
Publicado: (2020)