Cargando…
Characterization of enzymatic properties of two novel enzymes, 3,4-dihydroxyphenylacetate dioxygenase and 4-hydroxyphenylacetate 3-hydroxylase, from Sulfobacillus acidophilus TPY
BACKGROUND: As an environmental pollutant, 4-hydroxyphenylacetate (4-HPA) was a product of softwood lignin decomposition and was found in industrial effluents from olive oil production. Sulfobacillus acidophilus TPY was a moderately thermoacidophilic bacterium capable of degrading aromatic compounds...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375179/ https://www.ncbi.nlm.nih.gov/pubmed/30760216 http://dx.doi.org/10.1186/s12866-019-1415-9 |
_version_ | 1783395327004377088 |
---|---|
author | Guo, Wenbin Zhou, Wengen Zhou, Hongbo Chen, Xinhua |
author_facet | Guo, Wenbin Zhou, Wengen Zhou, Hongbo Chen, Xinhua |
author_sort | Guo, Wenbin |
collection | PubMed |
description | BACKGROUND: As an environmental pollutant, 4-hydroxyphenylacetate (4-HPA) was a product of softwood lignin decomposition and was found in industrial effluents from olive oil production. Sulfobacillus acidophilus TPY was a moderately thermoacidophilic bacterium capable of degrading aromatic compounds including 4-HPA. The enzymes involved in the degradation of 4-HPA and the role of this strain in the bioremediation of marine pollutants need to be illustrated. RESULTS: 3,4-dihydroxyphenylacetate dioxygenase (DHPAO) encoded by mhpB2 and two components of 4-hydroxydroxyphenylacetate (4-HPA) 3-hydroxylase encoded by hpaB and hpaC from S. acidophilus TPY, a moderately thermoacidophilic bacterium, involved in the degradation of 4-HPA possessed quite low amino acid sequence identity (22–53%) with other ever reported corresponding enzymes, which suggest their novelty. These two enzymes were expressed in E. coli and purified to homogeneity. DHPAO activity in E. coli was revealed by spraying with catechol or 3,4-dihydroxyphenylacetate (3,4-DHPA) on the colonies to make them turn brilliant yellow color. DHPAO possessed total activity of 7.81 U and 185.95 U/mg specific activity at the first minute when 3,4-DHPA was served as substrate. DHPAO was a thermophilic enzyme with optimum temperature of 50 °C and optimum substrate of 3,4-DHPA. The small component (HpaC) was a flavoprotein, and both HpaB and HpaC of 4-HPA 3-hydroxylase were NADH-dependent and essential in the conversion of 4-HPA to 3,4-DHPA. 4-HPA 3-hydroxylase possessed 3.59 U total activity and 27.37 U/mg specific activity at the first minute when enzymatic coupled assay with DHPAO was applied in the enzymatic determination. CONCLUSIONS: The ability of this extreme environmental marine strain to degrade catechol and substituted catechols suggest its applications in the bioremediation of catechol and substituted catechols polluted marine environments. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12866-019-1415-9) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6375179 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-63751792019-02-26 Characterization of enzymatic properties of two novel enzymes, 3,4-dihydroxyphenylacetate dioxygenase and 4-hydroxyphenylacetate 3-hydroxylase, from Sulfobacillus acidophilus TPY Guo, Wenbin Zhou, Wengen Zhou, Hongbo Chen, Xinhua BMC Microbiol Research Article BACKGROUND: As an environmental pollutant, 4-hydroxyphenylacetate (4-HPA) was a product of softwood lignin decomposition and was found in industrial effluents from olive oil production. Sulfobacillus acidophilus TPY was a moderately thermoacidophilic bacterium capable of degrading aromatic compounds including 4-HPA. The enzymes involved in the degradation of 4-HPA and the role of this strain in the bioremediation of marine pollutants need to be illustrated. RESULTS: 3,4-dihydroxyphenylacetate dioxygenase (DHPAO) encoded by mhpB2 and two components of 4-hydroxydroxyphenylacetate (4-HPA) 3-hydroxylase encoded by hpaB and hpaC from S. acidophilus TPY, a moderately thermoacidophilic bacterium, involved in the degradation of 4-HPA possessed quite low amino acid sequence identity (22–53%) with other ever reported corresponding enzymes, which suggest their novelty. These two enzymes were expressed in E. coli and purified to homogeneity. DHPAO activity in E. coli was revealed by spraying with catechol or 3,4-dihydroxyphenylacetate (3,4-DHPA) on the colonies to make them turn brilliant yellow color. DHPAO possessed total activity of 7.81 U and 185.95 U/mg specific activity at the first minute when 3,4-DHPA was served as substrate. DHPAO was a thermophilic enzyme with optimum temperature of 50 °C and optimum substrate of 3,4-DHPA. The small component (HpaC) was a flavoprotein, and both HpaB and HpaC of 4-HPA 3-hydroxylase were NADH-dependent and essential in the conversion of 4-HPA to 3,4-DHPA. 4-HPA 3-hydroxylase possessed 3.59 U total activity and 27.37 U/mg specific activity at the first minute when enzymatic coupled assay with DHPAO was applied in the enzymatic determination. CONCLUSIONS: The ability of this extreme environmental marine strain to degrade catechol and substituted catechols suggest its applications in the bioremediation of catechol and substituted catechols polluted marine environments. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12866-019-1415-9) contains supplementary material, which is available to authorized users. BioMed Central 2019-02-13 /pmc/articles/PMC6375179/ /pubmed/30760216 http://dx.doi.org/10.1186/s12866-019-1415-9 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Guo, Wenbin Zhou, Wengen Zhou, Hongbo Chen, Xinhua Characterization of enzymatic properties of two novel enzymes, 3,4-dihydroxyphenylacetate dioxygenase and 4-hydroxyphenylacetate 3-hydroxylase, from Sulfobacillus acidophilus TPY |
title | Characterization of enzymatic properties of two novel enzymes, 3,4-dihydroxyphenylacetate dioxygenase and 4-hydroxyphenylacetate 3-hydroxylase, from Sulfobacillus acidophilus TPY |
title_full | Characterization of enzymatic properties of two novel enzymes, 3,4-dihydroxyphenylacetate dioxygenase and 4-hydroxyphenylacetate 3-hydroxylase, from Sulfobacillus acidophilus TPY |
title_fullStr | Characterization of enzymatic properties of two novel enzymes, 3,4-dihydroxyphenylacetate dioxygenase and 4-hydroxyphenylacetate 3-hydroxylase, from Sulfobacillus acidophilus TPY |
title_full_unstemmed | Characterization of enzymatic properties of two novel enzymes, 3,4-dihydroxyphenylacetate dioxygenase and 4-hydroxyphenylacetate 3-hydroxylase, from Sulfobacillus acidophilus TPY |
title_short | Characterization of enzymatic properties of two novel enzymes, 3,4-dihydroxyphenylacetate dioxygenase and 4-hydroxyphenylacetate 3-hydroxylase, from Sulfobacillus acidophilus TPY |
title_sort | characterization of enzymatic properties of two novel enzymes, 3,4-dihydroxyphenylacetate dioxygenase and 4-hydroxyphenylacetate 3-hydroxylase, from sulfobacillus acidophilus tpy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375179/ https://www.ncbi.nlm.nih.gov/pubmed/30760216 http://dx.doi.org/10.1186/s12866-019-1415-9 |
work_keys_str_mv | AT guowenbin characterizationofenzymaticpropertiesoftwonovelenzymes34dihydroxyphenylacetatedioxygenaseand4hydroxyphenylacetate3hydroxylasefromsulfobacillusacidophilustpy AT zhouwengen characterizationofenzymaticpropertiesoftwonovelenzymes34dihydroxyphenylacetatedioxygenaseand4hydroxyphenylacetate3hydroxylasefromsulfobacillusacidophilustpy AT zhouhongbo characterizationofenzymaticpropertiesoftwonovelenzymes34dihydroxyphenylacetatedioxygenaseand4hydroxyphenylacetate3hydroxylasefromsulfobacillusacidophilustpy AT chenxinhua characterizationofenzymaticpropertiesoftwonovelenzymes34dihydroxyphenylacetatedioxygenaseand4hydroxyphenylacetate3hydroxylasefromsulfobacillusacidophilustpy |