Cargando…
Integrative analysis based on survival associated co-expression gene modules for predicting Neuroblastoma patients’ survival time
BACKGROUND: More than 90% of neuroblastoma patients are cured in the low-risk group while only less than 50% for those with high-risk disease can be cured. Since the high-risk patients still have poor outcomes, we need more accurate stratification to establish an individualized precise treatment pla...
Autores principales: | Han, Yatong, Ye, Xiufen, Cheng, Jun, Zhang, Siyuan, Feng, Weixing, Han, Zhi, Zhang, Jie, Huang, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375203/ https://www.ncbi.nlm.nih.gov/pubmed/30760313 http://dx.doi.org/10.1186/s13062-018-0229-2 |
Ejemplares similares
-
Integration of molecular features with clinical information for predicting outcomes for neuroblastoma patients
por: Han, Yatong, et al.
Publicado: (2019) -
Distance correlation application to gene co-expression network analysis
por: Hou, Jie, et al.
Publicado: (2022) -
TPSC: a module detection method based on topology potential and spectral clustering in weighted networks and its application in gene co-expression module discovery
por: Liu, Yusong, et al.
Publicado: (2021) -
Nomogram for predicting overall survival in children with neuroblastoma based on SEER database
por: Liang, Song-Wu, et al.
Publicado: (2020) -
Predicting survival times for neuroblastoma patients using RNA-seq expression profiles
por: Grimes, Tyler, et al.
Publicado: (2018)