Cargando…

A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate

Nonaqueous potassium-ion hybrid capacitors (KIHCs) are faced with limited redox reaction kinetics of electrodes for accommodation of large-sized K(+). Here, dipotassium terephthalate (K(2)TP) is applied as an organic negative electrode to provide comparable reaction kinetics with a non-faradaic acti...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Yuwen, Liu, Luojia, Lei, Kaixiang, Shi, Jifu, Xu, Gang, Li, Fujun, Chen, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375359/
https://www.ncbi.nlm.nih.gov/pubmed/30842862
http://dx.doi.org/10.1039/c8sc04489a
_version_ 1783395361144963072
author Luo, Yuwen
Liu, Luojia
Lei, Kaixiang
Shi, Jifu
Xu, Gang
Li, Fujun
Chen, Jun
author_facet Luo, Yuwen
Liu, Luojia
Lei, Kaixiang
Shi, Jifu
Xu, Gang
Li, Fujun
Chen, Jun
author_sort Luo, Yuwen
collection PubMed
description Nonaqueous potassium-ion hybrid capacitors (KIHCs) are faced with limited redox reaction kinetics of electrodes for accommodation of large-sized K(+). Here, dipotassium terephthalate (K(2)TP) is applied as an organic negative electrode to provide comparable reaction kinetics with a non-faradaic activated carbon (AC) positive electrode to boost the electrochemical performance of KIHCs. It is revealed that the large exchange current density and fast two-dimensional (2D) diffusion pathways of K(+) in K(2)TP determined by density functional theory (DFT) calculations ensure its fast redox reaction and transport kinetics. The as-constructed KIHC presents both high energy and power densities of 101 W h kg(–1) and 2160 W kg(–1) based on the mass of the two electrodes (41.5 W h kg(–1) and 885.2 W kg(–1) based on the mass of the two electrodes and electrolyte), respectively, and a superior capacity retention of 97.7% after 500 cycles. The excellent electrochemical performance is attributed to the fast kinetics, good structural flexibility, and small volume change (9.4%) of K(2)TP upon K(+) insertion/extraction, and its good compatibility with the AC positive electrode in 1,2-dimethoxyethane (DME)-based electrolyte. This will promote application of organic materials in hybrid capacitors and the development of KIHCs.
format Online
Article
Text
id pubmed-6375359
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-63753592019-03-06 A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate Luo, Yuwen Liu, Luojia Lei, Kaixiang Shi, Jifu Xu, Gang Li, Fujun Chen, Jun Chem Sci Chemistry Nonaqueous potassium-ion hybrid capacitors (KIHCs) are faced with limited redox reaction kinetics of electrodes for accommodation of large-sized K(+). Here, dipotassium terephthalate (K(2)TP) is applied as an organic negative electrode to provide comparable reaction kinetics with a non-faradaic activated carbon (AC) positive electrode to boost the electrochemical performance of KIHCs. It is revealed that the large exchange current density and fast two-dimensional (2D) diffusion pathways of K(+) in K(2)TP determined by density functional theory (DFT) calculations ensure its fast redox reaction and transport kinetics. The as-constructed KIHC presents both high energy and power densities of 101 W h kg(–1) and 2160 W kg(–1) based on the mass of the two electrodes (41.5 W h kg(–1) and 885.2 W kg(–1) based on the mass of the two electrodes and electrolyte), respectively, and a superior capacity retention of 97.7% after 500 cycles. The excellent electrochemical performance is attributed to the fast kinetics, good structural flexibility, and small volume change (9.4%) of K(2)TP upon K(+) insertion/extraction, and its good compatibility with the AC positive electrode in 1,2-dimethoxyethane (DME)-based electrolyte. This will promote application of organic materials in hybrid capacitors and the development of KIHCs. Royal Society of Chemistry 2018-12-10 /pmc/articles/PMC6375359/ /pubmed/30842862 http://dx.doi.org/10.1039/c8sc04489a Text en This journal is © The Royal Society of Chemistry 2019 https://creativecommons.org/licenses/by-nc/3.0/This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0)
spellingShingle Chemistry
Luo, Yuwen
Liu, Luojia
Lei, Kaixiang
Shi, Jifu
Xu, Gang
Li, Fujun
Chen, Jun
A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate
title A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate
title_full A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate
title_fullStr A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate
title_full_unstemmed A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate
title_short A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate
title_sort nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375359/
https://www.ncbi.nlm.nih.gov/pubmed/30842862
http://dx.doi.org/10.1039/c8sc04489a
work_keys_str_mv AT luoyuwen anonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate
AT liuluojia anonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate
AT leikaixiang anonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate
AT shijifu anonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate
AT xugang anonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate
AT lifujun anonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate
AT chenjun anonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate
AT luoyuwen nonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate
AT liuluojia nonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate
AT leikaixiang nonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate
AT shijifu nonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate
AT xugang nonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate
AT lifujun nonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate
AT chenjun nonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate