Cargando…
A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate
Nonaqueous potassium-ion hybrid capacitors (KIHCs) are faced with limited redox reaction kinetics of electrodes for accommodation of large-sized K(+). Here, dipotassium terephthalate (K(2)TP) is applied as an organic negative electrode to provide comparable reaction kinetics with a non-faradaic acti...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375359/ https://www.ncbi.nlm.nih.gov/pubmed/30842862 http://dx.doi.org/10.1039/c8sc04489a |
_version_ | 1783395361144963072 |
---|---|
author | Luo, Yuwen Liu, Luojia Lei, Kaixiang Shi, Jifu Xu, Gang Li, Fujun Chen, Jun |
author_facet | Luo, Yuwen Liu, Luojia Lei, Kaixiang Shi, Jifu Xu, Gang Li, Fujun Chen, Jun |
author_sort | Luo, Yuwen |
collection | PubMed |
description | Nonaqueous potassium-ion hybrid capacitors (KIHCs) are faced with limited redox reaction kinetics of electrodes for accommodation of large-sized K(+). Here, dipotassium terephthalate (K(2)TP) is applied as an organic negative electrode to provide comparable reaction kinetics with a non-faradaic activated carbon (AC) positive electrode to boost the electrochemical performance of KIHCs. It is revealed that the large exchange current density and fast two-dimensional (2D) diffusion pathways of K(+) in K(2)TP determined by density functional theory (DFT) calculations ensure its fast redox reaction and transport kinetics. The as-constructed KIHC presents both high energy and power densities of 101 W h kg(–1) and 2160 W kg(–1) based on the mass of the two electrodes (41.5 W h kg(–1) and 885.2 W kg(–1) based on the mass of the two electrodes and electrolyte), respectively, and a superior capacity retention of 97.7% after 500 cycles. The excellent electrochemical performance is attributed to the fast kinetics, good structural flexibility, and small volume change (9.4%) of K(2)TP upon K(+) insertion/extraction, and its good compatibility with the AC positive electrode in 1,2-dimethoxyethane (DME)-based electrolyte. This will promote application of organic materials in hybrid capacitors and the development of KIHCs. |
format | Online Article Text |
id | pubmed-6375359 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-63753592019-03-06 A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate Luo, Yuwen Liu, Luojia Lei, Kaixiang Shi, Jifu Xu, Gang Li, Fujun Chen, Jun Chem Sci Chemistry Nonaqueous potassium-ion hybrid capacitors (KIHCs) are faced with limited redox reaction kinetics of electrodes for accommodation of large-sized K(+). Here, dipotassium terephthalate (K(2)TP) is applied as an organic negative electrode to provide comparable reaction kinetics with a non-faradaic activated carbon (AC) positive electrode to boost the electrochemical performance of KIHCs. It is revealed that the large exchange current density and fast two-dimensional (2D) diffusion pathways of K(+) in K(2)TP determined by density functional theory (DFT) calculations ensure its fast redox reaction and transport kinetics. The as-constructed KIHC presents both high energy and power densities of 101 W h kg(–1) and 2160 W kg(–1) based on the mass of the two electrodes (41.5 W h kg(–1) and 885.2 W kg(–1) based on the mass of the two electrodes and electrolyte), respectively, and a superior capacity retention of 97.7% after 500 cycles. The excellent electrochemical performance is attributed to the fast kinetics, good structural flexibility, and small volume change (9.4%) of K(2)TP upon K(+) insertion/extraction, and its good compatibility with the AC positive electrode in 1,2-dimethoxyethane (DME)-based electrolyte. This will promote application of organic materials in hybrid capacitors and the development of KIHCs. Royal Society of Chemistry 2018-12-10 /pmc/articles/PMC6375359/ /pubmed/30842862 http://dx.doi.org/10.1039/c8sc04489a Text en This journal is © The Royal Society of Chemistry 2019 https://creativecommons.org/licenses/by-nc/3.0/This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
spellingShingle | Chemistry Luo, Yuwen Liu, Luojia Lei, Kaixiang Shi, Jifu Xu, Gang Li, Fujun Chen, Jun A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate |
title | A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate
|
title_full | A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate
|
title_fullStr | A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate
|
title_full_unstemmed | A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate
|
title_short | A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate
|
title_sort | nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375359/ https://www.ncbi.nlm.nih.gov/pubmed/30842862 http://dx.doi.org/10.1039/c8sc04489a |
work_keys_str_mv | AT luoyuwen anonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate AT liuluojia anonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate AT leikaixiang anonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate AT shijifu anonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate AT xugang anonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate AT lifujun anonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate AT chenjun anonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate AT luoyuwen nonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate AT liuluojia nonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate AT leikaixiang nonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate AT shijifu nonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate AT xugang nonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate AT lifujun nonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate AT chenjun nonaqueouspotassiumionhybridcapacitorenabledbytwodimensionaldiffusionpathwaysofdipotassiumterephthalate |