Cargando…

DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network

Comprehensive characterization of ligand-binding sites is invaluable to infer molecular functions of hypothetical proteins, trace evolutionary relationships between proteins, engineer enzymes to achieve a desired substrate specificity, and develop drugs with improved selectivity profiles. These rese...

Descripción completa

Detalles Bibliográficos
Autores principales: Pu, Limeng, Govindaraj, Rajiv Gandhi, Lemoine, Jeffrey Mitchell, Wu, Hsiao-Chun, Brylinski, Michal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375647/
https://www.ncbi.nlm.nih.gov/pubmed/30716081
http://dx.doi.org/10.1371/journal.pcbi.1006718
_version_ 1783395403039768576
author Pu, Limeng
Govindaraj, Rajiv Gandhi
Lemoine, Jeffrey Mitchell
Wu, Hsiao-Chun
Brylinski, Michal
author_facet Pu, Limeng
Govindaraj, Rajiv Gandhi
Lemoine, Jeffrey Mitchell
Wu, Hsiao-Chun
Brylinski, Michal
author_sort Pu, Limeng
collection PubMed
description Comprehensive characterization of ligand-binding sites is invaluable to infer molecular functions of hypothetical proteins, trace evolutionary relationships between proteins, engineer enzymes to achieve a desired substrate specificity, and develop drugs with improved selectivity profiles. These research efforts pose significant challenges owing to the fact that similar pockets are commonly observed across different folds, leading to the high degree of promiscuity of ligand-protein interactions at the system-level. On that account, novel algorithms to accurately classify binding sites are needed. Deep learning is attracting a significant attention due to its successful applications in a wide range of disciplines. In this communication, we present DeepDrug3D, a new approach to characterize and classify binding pockets in proteins with deep learning. It employs a state-of-the-art convolutional neural network in which biomolecular structures are represented as voxels assigned interaction energy-based attributes. The current implementation of DeepDrug3D, trained to detect and classify nucleotide- and heme-binding sites, not only achieves a high accuracy of 95%, but also has the ability to generalize to unseen data as demonstrated for steroid-binding proteins and peptidase enzymes. Interestingly, the analysis of strongly discriminative regions of binding pockets reveals that this high classification accuracy arises from learning the patterns of specific molecular interactions, such as hydrogen bonds, aromatic and hydrophobic contacts. DeepDrug3D is available as an open-source program at https://github.com/pulimeng/DeepDrug3D with the accompanying TOUGH-C1 benchmarking dataset accessible from https://osf.io/enz69/.
format Online
Article
Text
id pubmed-6375647
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-63756472019-03-01 DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network Pu, Limeng Govindaraj, Rajiv Gandhi Lemoine, Jeffrey Mitchell Wu, Hsiao-Chun Brylinski, Michal PLoS Comput Biol Research Article Comprehensive characterization of ligand-binding sites is invaluable to infer molecular functions of hypothetical proteins, trace evolutionary relationships between proteins, engineer enzymes to achieve a desired substrate specificity, and develop drugs with improved selectivity profiles. These research efforts pose significant challenges owing to the fact that similar pockets are commonly observed across different folds, leading to the high degree of promiscuity of ligand-protein interactions at the system-level. On that account, novel algorithms to accurately classify binding sites are needed. Deep learning is attracting a significant attention due to its successful applications in a wide range of disciplines. In this communication, we present DeepDrug3D, a new approach to characterize and classify binding pockets in proteins with deep learning. It employs a state-of-the-art convolutional neural network in which biomolecular structures are represented as voxels assigned interaction energy-based attributes. The current implementation of DeepDrug3D, trained to detect and classify nucleotide- and heme-binding sites, not only achieves a high accuracy of 95%, but also has the ability to generalize to unseen data as demonstrated for steroid-binding proteins and peptidase enzymes. Interestingly, the analysis of strongly discriminative regions of binding pockets reveals that this high classification accuracy arises from learning the patterns of specific molecular interactions, such as hydrogen bonds, aromatic and hydrophobic contacts. DeepDrug3D is available as an open-source program at https://github.com/pulimeng/DeepDrug3D with the accompanying TOUGH-C1 benchmarking dataset accessible from https://osf.io/enz69/. Public Library of Science 2019-02-04 /pmc/articles/PMC6375647/ /pubmed/30716081 http://dx.doi.org/10.1371/journal.pcbi.1006718 Text en © 2019 Pu et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Pu, Limeng
Govindaraj, Rajiv Gandhi
Lemoine, Jeffrey Mitchell
Wu, Hsiao-Chun
Brylinski, Michal
DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network
title DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network
title_full DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network
title_fullStr DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network
title_full_unstemmed DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network
title_short DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network
title_sort deepdrug3d: classification of ligand-binding pockets in proteins with a convolutional neural network
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375647/
https://www.ncbi.nlm.nih.gov/pubmed/30716081
http://dx.doi.org/10.1371/journal.pcbi.1006718
work_keys_str_mv AT pulimeng deepdrug3dclassificationofligandbindingpocketsinproteinswithaconvolutionalneuralnetwork
AT govindarajrajivgandhi deepdrug3dclassificationofligandbindingpocketsinproteinswithaconvolutionalneuralnetwork
AT lemoinejeffreymitchell deepdrug3dclassificationofligandbindingpocketsinproteinswithaconvolutionalneuralnetwork
AT wuhsiaochun deepdrug3dclassificationofligandbindingpocketsinproteinswithaconvolutionalneuralnetwork
AT brylinskimichal deepdrug3dclassificationofligandbindingpocketsinproteinswithaconvolutionalneuralnetwork