Cargando…
DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network
Comprehensive characterization of ligand-binding sites is invaluable to infer molecular functions of hypothetical proteins, trace evolutionary relationships between proteins, engineer enzymes to achieve a desired substrate specificity, and develop drugs with improved selectivity profiles. These rese...
Autores principales: | Pu, Limeng, Govindaraj, Rajiv Gandhi, Lemoine, Jeffrey Mitchell, Wu, Hsiao-Chun, Brylinski, Michal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375647/ https://www.ncbi.nlm.nih.gov/pubmed/30716081 http://dx.doi.org/10.1371/journal.pcbi.1006718 |
Ejemplares similares
-
Comparative assessment of strategies to identify similar ligand-binding pockets in proteins
por: Govindaraj, Rajiv Gandhi, et al.
Publicado: (2018) -
GraphSite: Ligand Binding Site Classification with Deep Graph Learning
por: Shi, Wentao, et al.
Publicado: (2022) -
Pocket2Drug: An Encoder-Decoder Deep Neural Network for the Target-Based Drug Design
por: Shi, Wentao, et al.
Publicado: (2022) -
Large-scale computational drug repositioning to find treatments for rare diseases
por: Govindaraj, Rajiv Gandhi, et al.
Publicado: (2018) -
eModel-BDB: a database of comparative structure models of drug-target interactions from the Binding Database
por: Naderi, Misagh, et al.
Publicado: (2018)