Cargando…
Towards calibration-invariant spectroscopy using deep learning
The interaction between matter and electromagnetic radiation provides a rich understanding of what the matter is composed of and how it can be quantified using spectrometers. In many cases, however, the calibration of the spectrometer changes as a function of time (such as in electron spectrometers)...
Autores principales: | Chatzidakis, M., Botton, G. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376024/ https://www.ncbi.nlm.nih.gov/pubmed/30765890 http://dx.doi.org/10.1038/s41598-019-38482-1 |
Ejemplares similares
-
Alignment-invariant signal reality reconstruction in hyperspectral imaging using a deep convolutional neural network architecture
por: Mousavi M., S. Shayan, et al.
Publicado: (2022) -
Hand–eye calibration for rigid laparoscopes using an invariant point
por: Thompson, Stephen, et al.
Publicado: (2016) -
Pooling Operations in Deep Learning: From “Invariable” to “Variable”
por: Tao, Zhou, et al.
Publicado: (2022) -
Calibration Invariance of the MaxEnt Distribution in the Maximum Entropy Principle
por: Korbel, Jan
Publicado: (2021) -
Spectroscopy Transmittance by LED Calibration
por: Carreres-Prieto, Daniel, et al.
Publicado: (2019)