Cargando…
A Surface Plasmon Resonance-based assay to measure serum concentrations of therapeutic antibodies and anti-drug antibodies
Therapeutic drug and immunogenicity monitoring (TDIM) is increasingly proposed to guide therapy with biologics, characterised by high inter-individual variability of their blood levels, to permit objective decisions for the management of non-responders and reduce unnecessary interventions with these...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376047/ https://www.ncbi.nlm.nih.gov/pubmed/30765716 http://dx.doi.org/10.1038/s41598-018-37950-4 |
Sumario: | Therapeutic drug and immunogenicity monitoring (TDIM) is increasingly proposed to guide therapy with biologics, characterised by high inter-individual variability of their blood levels, to permit objective decisions for the management of non-responders and reduce unnecessary interventions with these expensive treatments. However, TDIM has not yet entered clinical practice partly because of uncertainties regarding the accuracy and precision of enzyme-linked immunosorbent assays (ELISA). Here we report the characterisation of a novel surface plasmon resonance (SPR)-based TDIM, applied to the measurement of serum concentrations of infliximab, an antibody against tumour necrosis factor α (anti-TNFα), and anti-infliximab antibodies. SPR has the obvious advantages of directly detecting and measuring serum antibodies in minutes, avoiding the long incubation/separation/washing/detection steps of the methods proposed so far, reducing complexity and variability. Moreover, drug and anti-drug antibodies can be measured simultaneously. This new method was validated for sensitivity and reproducibility, and showed cost-effectiveness over commercial ELISA kits. This method may be applied to other biotherapeutics. These data pave the way for the development of SPR-based point-of-care devices for rapid on-site analysis. |
---|