Cargando…

Integrative taxonomy of a new Redudasys species (Gastrotricha: Macrodasyida) sheds light on the invasion of fresh water habitats by macrodasyids

The order Macrodasyida (Gastrotricha) includes over 350 marine species, and only 3 freshwater species (Marinellina flagellata, Redudasys fornerise, R. neotemperatus). Herein we describe a new freshwater species of Macrodasyida, Redudasys brasiliensis sp. nov., from Brazil through an integrative taxo...

Descripción completa

Detalles Bibliográficos
Autores principales: Garraffoni, André R. S., Araújo, Thiago Q., Lourenço, Anete P., Guidi, Loretta, Balsamo, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376054/
https://www.ncbi.nlm.nih.gov/pubmed/30765851
http://dx.doi.org/10.1038/s41598-018-38033-0
Descripción
Sumario:The order Macrodasyida (Gastrotricha) includes over 350 marine species, and only 3 freshwater species (Marinellina flagellata, Redudasys fornerise, R. neotemperatus). Herein we describe a new freshwater species of Macrodasyida, Redudasys brasiliensis sp. nov., from Brazil through an integrative taxonomic approach. The external morphology and internal anatomy were investigated using differential interference contrast microscopy, confocal microscopy, scanning and transmission electron microscopy. The systematization of the new taxon was inferred by nuclear (18S and 28S) and mitochondrial (COI) genes, and its intra-order relationships were assessed using data from most of available macrodasyids. Phylogenetic analyses yielded congruent trees, in which the new taxon is nested within the family Redudasyidae, but it was genetically distinct from the other species of the genus Redudasys. The new species shares the gross morphology and reproductive traits with other Redudasyidae and the presence of only 1 anterior adhesive tube per side with Redudasys neotemperatus, but it has a specific pattern of ventral ciliation and muscle organization. Results support the hypothesis that dispersion into fresh water habitats by Macrodasyida and Chaetonotida taxa occurred independently and that within Macrodasyida a single lineage invaded the freshwater environment only once. Furthermore, the Neotropical region seems to be peculiar for the evolution of the freshwater macrodasyid clade.