Cargando…
Iterative unsupervised domain adaptation for generalized cell detection from brightfield z-stacks
BACKGROUND: Cell counting from cell cultures is required in multiple biological and biomedical research applications. Especially, accurate brightfield-based cell counting methods are needed for cell growth analysis. With deep learning, cells can be detected with high accuracy, but manually annotated...
Autores principales: | Liimatainen, Kaisa, Kananen, Lauri, Latonen, Leena, Ruusuvuori, Pekka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376647/ https://www.ncbi.nlm.nih.gov/pubmed/30767778 http://dx.doi.org/10.1186/s12859-019-2605-z |
Ejemplares similares
-
Convolutional Neural Network-Based Artificial Intelligence for Classification of Protein Localization Patterns
por: Liimatainen, Kaisa, et al.
Publicado: (2021) -
Virtual reality for 3D histology: multi-scale visualization of organs with interactive feature exploration
por: Liimatainen, Kaisa, et al.
Publicado: (2021) -
Flow Cytometry-Based Classification in Cancer Research: A View on Feature Selection
por: Hassan, S. Sakira, et al.
Publicado: (2016) -
Feature-based analysis of mouse prostatic intraepithelial neoplasia in histological tissue sections
por: Ruusuvuori, Pekka, et al.
Publicado: (2016) -
The effect of neural network architecture on virtual H&E staining: Systematic assessment of histological feasibility
por: Khan, Umair, et al.
Publicado: (2023)