Cargando…

A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS)

BACKGROUND: Vast volumes of data, coded through hierarchical terminologies (e.g., International Classification of Diseases, Tenth Revision–Clinical Modification [ICD10-CM], Medical Subject Headings [MeSH]), are generated routinely in electronic health record systems and medical literature databases....

Descripción completa

Detalles Bibliográficos
Autores principales: Jing, Xia, Emerson, Matthew, Masters, David, Brooks, Matthew, Buskirk, Jacob, Abukamail, Nasseef, Liu, Chang, Cimino, James J., Shubrook, Jay, De Lacalle, Sonsoles, Zhou, Yuchun, Patel, Vimla L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376747/
https://www.ncbi.nlm.nih.gov/pubmed/30764811
http://dx.doi.org/10.1186/s12911-019-0750-y
_version_ 1783395629110657024
author Jing, Xia
Emerson, Matthew
Masters, David
Brooks, Matthew
Buskirk, Jacob
Abukamail, Nasseef
Liu, Chang
Cimino, James J.
Shubrook, Jay
De Lacalle, Sonsoles
Zhou, Yuchun
Patel, Vimla L.
author_facet Jing, Xia
Emerson, Matthew
Masters, David
Brooks, Matthew
Buskirk, Jacob
Abukamail, Nasseef
Liu, Chang
Cimino, James J.
Shubrook, Jay
De Lacalle, Sonsoles
Zhou, Yuchun
Patel, Vimla L.
author_sort Jing, Xia
collection PubMed
description BACKGROUND: Vast volumes of data, coded through hierarchical terminologies (e.g., International Classification of Diseases, Tenth Revision–Clinical Modification [ICD10-CM], Medical Subject Headings [MeSH]), are generated routinely in electronic health record systems and medical literature databases. Although graphic representations can help to augment human understanding of such data sets, a graph with hundreds or thousands of nodes challenges human comprehension. To improve comprehension, new tools are needed to extract the overviews of such data sets. We aim to develop a visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS) as an online, and publicly accessible tool. The ultimate goals are to filter, summarize the health data sets, extract insights, compare and highlight the differences between various health data sets by using VIADS. The results generated from VIADS can be utilized as data-driven evidence to facilitate clinicians, clinical researchers, and health care administrators to make more informed clinical, research, and administrative decisions. We utilized the following tools and the development environments to develop VIADS: Django, Python, JavaScript, Vis.js, Graph.js, JQuery, Plotly, Chart.js, Unittest, R, and MySQL. RESULTS: VIADS was developed successfully and the beta version is accessible publicly. In this paper, we introduce the architecture design, development, and functionalities of VIADS. VIADS includes six modules: user account management module, data sets validation module, data analytic module, data visualization module, terminology module, dashboard. Currently, VIADS supports health data sets coded by ICD-9, ICD-10, and MeSH. We also present the visualization improvement provided by VIADS in regard to interactive features (e.g., zoom in and out, customization of graph layout, expanded information of nodes, 3D plots) and efficient screen space usage. CONCLUSIONS: VIADS meets the design objectives and can be used to filter, summarize, compare, highlight and visualize large health data sets that coded by hierarchical terminologies, such as ICD-9, ICD-10 and MeSH. Our further usability and utility studies will provide more details about how the end users are using VIADS to facilitate their clinical, research or health administrative decision making.
format Online
Article
Text
id pubmed-6376747
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-63767472019-02-27 A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS) Jing, Xia Emerson, Matthew Masters, David Brooks, Matthew Buskirk, Jacob Abukamail, Nasseef Liu, Chang Cimino, James J. Shubrook, Jay De Lacalle, Sonsoles Zhou, Yuchun Patel, Vimla L. BMC Med Inform Decis Mak Software BACKGROUND: Vast volumes of data, coded through hierarchical terminologies (e.g., International Classification of Diseases, Tenth Revision–Clinical Modification [ICD10-CM], Medical Subject Headings [MeSH]), are generated routinely in electronic health record systems and medical literature databases. Although graphic representations can help to augment human understanding of such data sets, a graph with hundreds or thousands of nodes challenges human comprehension. To improve comprehension, new tools are needed to extract the overviews of such data sets. We aim to develop a visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS) as an online, and publicly accessible tool. The ultimate goals are to filter, summarize the health data sets, extract insights, compare and highlight the differences between various health data sets by using VIADS. The results generated from VIADS can be utilized as data-driven evidence to facilitate clinicians, clinical researchers, and health care administrators to make more informed clinical, research, and administrative decisions. We utilized the following tools and the development environments to develop VIADS: Django, Python, JavaScript, Vis.js, Graph.js, JQuery, Plotly, Chart.js, Unittest, R, and MySQL. RESULTS: VIADS was developed successfully and the beta version is accessible publicly. In this paper, we introduce the architecture design, development, and functionalities of VIADS. VIADS includes six modules: user account management module, data sets validation module, data analytic module, data visualization module, terminology module, dashboard. Currently, VIADS supports health data sets coded by ICD-9, ICD-10, and MeSH. We also present the visualization improvement provided by VIADS in regard to interactive features (e.g., zoom in and out, customization of graph layout, expanded information of nodes, 3D plots) and efficient screen space usage. CONCLUSIONS: VIADS meets the design objectives and can be used to filter, summarize, compare, highlight and visualize large health data sets that coded by hierarchical terminologies, such as ICD-9, ICD-10 and MeSH. Our further usability and utility studies will provide more details about how the end users are using VIADS to facilitate their clinical, research or health administrative decision making. BioMed Central 2019-02-14 /pmc/articles/PMC6376747/ /pubmed/30764811 http://dx.doi.org/10.1186/s12911-019-0750-y Text en © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Software
Jing, Xia
Emerson, Matthew
Masters, David
Brooks, Matthew
Buskirk, Jacob
Abukamail, Nasseef
Liu, Chang
Cimino, James J.
Shubrook, Jay
De Lacalle, Sonsoles
Zhou, Yuchun
Patel, Vimla L.
A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS)
title A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS)
title_full A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS)
title_fullStr A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS)
title_full_unstemmed A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS)
title_short A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS)
title_sort visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (viads)
topic Software
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376747/
https://www.ncbi.nlm.nih.gov/pubmed/30764811
http://dx.doi.org/10.1186/s12911-019-0750-y
work_keys_str_mv AT jingxia avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT emersonmatthew avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT mastersdavid avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT brooksmatthew avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT buskirkjacob avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT abukamailnasseef avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT liuchang avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT ciminojamesj avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT shubrookjay avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT delacallesonsoles avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT zhouyuchun avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT patelvimlal avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT jingxia visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT emersonmatthew visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT mastersdavid visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT brooksmatthew visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT buskirkjacob visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT abukamailnasseef visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT liuchang visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT ciminojamesj visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT shubrookjay visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT delacallesonsoles visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT zhouyuchun visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads
AT patelvimlal visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads