Cargando…
A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS)
BACKGROUND: Vast volumes of data, coded through hierarchical terminologies (e.g., International Classification of Diseases, Tenth Revision–Clinical Modification [ICD10-CM], Medical Subject Headings [MeSH]), are generated routinely in electronic health record systems and medical literature databases....
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376747/ https://www.ncbi.nlm.nih.gov/pubmed/30764811 http://dx.doi.org/10.1186/s12911-019-0750-y |
_version_ | 1783395629110657024 |
---|---|
author | Jing, Xia Emerson, Matthew Masters, David Brooks, Matthew Buskirk, Jacob Abukamail, Nasseef Liu, Chang Cimino, James J. Shubrook, Jay De Lacalle, Sonsoles Zhou, Yuchun Patel, Vimla L. |
author_facet | Jing, Xia Emerson, Matthew Masters, David Brooks, Matthew Buskirk, Jacob Abukamail, Nasseef Liu, Chang Cimino, James J. Shubrook, Jay De Lacalle, Sonsoles Zhou, Yuchun Patel, Vimla L. |
author_sort | Jing, Xia |
collection | PubMed |
description | BACKGROUND: Vast volumes of data, coded through hierarchical terminologies (e.g., International Classification of Diseases, Tenth Revision–Clinical Modification [ICD10-CM], Medical Subject Headings [MeSH]), are generated routinely in electronic health record systems and medical literature databases. Although graphic representations can help to augment human understanding of such data sets, a graph with hundreds or thousands of nodes challenges human comprehension. To improve comprehension, new tools are needed to extract the overviews of such data sets. We aim to develop a visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS) as an online, and publicly accessible tool. The ultimate goals are to filter, summarize the health data sets, extract insights, compare and highlight the differences between various health data sets by using VIADS. The results generated from VIADS can be utilized as data-driven evidence to facilitate clinicians, clinical researchers, and health care administrators to make more informed clinical, research, and administrative decisions. We utilized the following tools and the development environments to develop VIADS: Django, Python, JavaScript, Vis.js, Graph.js, JQuery, Plotly, Chart.js, Unittest, R, and MySQL. RESULTS: VIADS was developed successfully and the beta version is accessible publicly. In this paper, we introduce the architecture design, development, and functionalities of VIADS. VIADS includes six modules: user account management module, data sets validation module, data analytic module, data visualization module, terminology module, dashboard. Currently, VIADS supports health data sets coded by ICD-9, ICD-10, and MeSH. We also present the visualization improvement provided by VIADS in regard to interactive features (e.g., zoom in and out, customization of graph layout, expanded information of nodes, 3D plots) and efficient screen space usage. CONCLUSIONS: VIADS meets the design objectives and can be used to filter, summarize, compare, highlight and visualize large health data sets that coded by hierarchical terminologies, such as ICD-9, ICD-10 and MeSH. Our further usability and utility studies will provide more details about how the end users are using VIADS to facilitate their clinical, research or health administrative decision making. |
format | Online Article Text |
id | pubmed-6376747 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-63767472019-02-27 A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS) Jing, Xia Emerson, Matthew Masters, David Brooks, Matthew Buskirk, Jacob Abukamail, Nasseef Liu, Chang Cimino, James J. Shubrook, Jay De Lacalle, Sonsoles Zhou, Yuchun Patel, Vimla L. BMC Med Inform Decis Mak Software BACKGROUND: Vast volumes of data, coded through hierarchical terminologies (e.g., International Classification of Diseases, Tenth Revision–Clinical Modification [ICD10-CM], Medical Subject Headings [MeSH]), are generated routinely in electronic health record systems and medical literature databases. Although graphic representations can help to augment human understanding of such data sets, a graph with hundreds or thousands of nodes challenges human comprehension. To improve comprehension, new tools are needed to extract the overviews of such data sets. We aim to develop a visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS) as an online, and publicly accessible tool. The ultimate goals are to filter, summarize the health data sets, extract insights, compare and highlight the differences between various health data sets by using VIADS. The results generated from VIADS can be utilized as data-driven evidence to facilitate clinicians, clinical researchers, and health care administrators to make more informed clinical, research, and administrative decisions. We utilized the following tools and the development environments to develop VIADS: Django, Python, JavaScript, Vis.js, Graph.js, JQuery, Plotly, Chart.js, Unittest, R, and MySQL. RESULTS: VIADS was developed successfully and the beta version is accessible publicly. In this paper, we introduce the architecture design, development, and functionalities of VIADS. VIADS includes six modules: user account management module, data sets validation module, data analytic module, data visualization module, terminology module, dashboard. Currently, VIADS supports health data sets coded by ICD-9, ICD-10, and MeSH. We also present the visualization improvement provided by VIADS in regard to interactive features (e.g., zoom in and out, customization of graph layout, expanded information of nodes, 3D plots) and efficient screen space usage. CONCLUSIONS: VIADS meets the design objectives and can be used to filter, summarize, compare, highlight and visualize large health data sets that coded by hierarchical terminologies, such as ICD-9, ICD-10 and MeSH. Our further usability and utility studies will provide more details about how the end users are using VIADS to facilitate their clinical, research or health administrative decision making. BioMed Central 2019-02-14 /pmc/articles/PMC6376747/ /pubmed/30764811 http://dx.doi.org/10.1186/s12911-019-0750-y Text en © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Software Jing, Xia Emerson, Matthew Masters, David Brooks, Matthew Buskirk, Jacob Abukamail, Nasseef Liu, Chang Cimino, James J. Shubrook, Jay De Lacalle, Sonsoles Zhou, Yuchun Patel, Vimla L. A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS) |
title | A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS) |
title_full | A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS) |
title_fullStr | A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS) |
title_full_unstemmed | A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS) |
title_short | A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS) |
title_sort | visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (viads) |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376747/ https://www.ncbi.nlm.nih.gov/pubmed/30764811 http://dx.doi.org/10.1186/s12911-019-0750-y |
work_keys_str_mv | AT jingxia avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT emersonmatthew avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT mastersdavid avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT brooksmatthew avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT buskirkjacob avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT abukamailnasseef avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT liuchang avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT ciminojamesj avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT shubrookjay avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT delacallesonsoles avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT zhouyuchun avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT patelvimlal avisualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT jingxia visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT emersonmatthew visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT mastersdavid visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT brooksmatthew visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT buskirkjacob visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT abukamailnasseef visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT liuchang visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT ciminojamesj visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT shubrookjay visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT delacallesonsoles visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT zhouyuchun visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads AT patelvimlal visualinteractiveanalytictoolforfilteringandsummarizinglargehealthdatasetscodedwithhierarchicalterminologiesviads |